如何用共聚焦扫描技术测量光学结构表面?
共聚焦扫描技术是一种广泛应用于光学结构表面形貌测量的超精密测量方法。本文将介绍共聚焦扫描技术的基本原理及其发展历程。
一、基本原理
共聚焦扫描技术起源于20世纪80年代,其工作原理基于激光光源发出的光线经过分光镜和显微物镜后投射至待测物体表面。反射回来的光线沿原光路返回,并经过共聚焦针孔滤光片。只有当待测物体表面位于焦平面时,反射光才能通过针孔滤光片并被光强倍增管接收。若待测物体表面偏离焦平面,则反射光将被滤光片阻挡。在测量过程中,通过PZT驱动器调整物镜与待测物体的距离,以寻找最佳焦平面。当接收到的光信号达到最大值时,表明待测物体表面已处于焦平面位置。此时,激光在物体表面形成一个焦点,通过相关数学模型可计算出该焦点处的高度信息。通过对物体表面各点进行逐一测量,便可获取整个表面的三维形貌数据。
二、发展历程
尽管共聚焦扫描技术在测量精度方面具有显著优势,但由于每次垂直扫描仅能测量一个点的高度,因此需借助高精度三轴运动平台实现逐点扫描,导致测量过程较为耗时。为提高测量效率,研究人员对共聚焦扫描技术进行了诸多改进,例如数字微镜法和Nipkow转盘法等多光束并行共聚焦技术。这些改进方法能够在单次扫描过程中同时测量多个点的高度信息,从而显著缩短了测量时间,提高了测量效率。
以上就是“如何用共聚焦扫描技术测量光学结构表面?”的相关介绍,如果您想要了解更多关于光学设备的知识,欢迎关注欧光科技。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30