如何用共聚焦扫描技术测量光学结构表面?
共聚焦扫描技术是一种广泛应用于光学结构表面形貌测量的超精密测量方法。本文将介绍共聚焦扫描技术的基本原理及其发展历程。

一、基本原理
共聚焦扫描技术起源于20世纪80年代,其工作原理基于激光光源发出的光线经过分光镜和显微物镜后投射至待测物体表面。反射回来的光线沿原光路返回,并经过共聚焦针孔滤光片。只有当待测物体表面位于焦平面时,反射光才能通过针孔滤光片并被光强倍增管接收。若待测物体表面偏离焦平面,则反射光将被滤光片阻挡。在测量过程中,通过PZT驱动器调整物镜与待测物体的距离,以寻找最佳焦平面。当接收到的光信号达到最大值时,表明待测物体表面已处于焦平面位置。此时,激光在物体表面形成一个焦点,通过相关数学模型可计算出该焦点处的高度信息。通过对物体表面各点进行逐一测量,便可获取整个表面的三维形貌数据。
二、发展历程
尽管共聚焦扫描技术在测量精度方面具有显著优势,但由于每次垂直扫描仅能测量一个点的高度,因此需借助高精度三轴运动平台实现逐点扫描,导致测量过程较为耗时。为提高测量效率,研究人员对共聚焦扫描技术进行了诸多改进,例如数字微镜法和Nipkow转盘法等多光束并行共聚焦技术。这些改进方法能够在单次扫描过程中同时测量多个点的高度信息,从而显著缩短了测量时间,提高了测量效率。
以上就是“如何用共聚焦扫描技术测量光学结构表面?”的相关介绍,如果您想要了解更多关于光学设备的知识,欢迎关注欧光科技。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
