如何用共聚焦扫描技术测量光学结构表面?
共聚焦扫描技术是一种广泛应用于光学结构表面形貌测量的超精密测量方法。本文将介绍共聚焦扫描技术的基本原理及其发展历程。

一、基本原理
共聚焦扫描技术起源于20世纪80年代,其工作原理基于激光光源发出的光线经过分光镜和显微物镜后投射至待测物体表面。反射回来的光线沿原光路返回,并经过共聚焦针孔滤光片。只有当待测物体表面位于焦平面时,反射光才能通过针孔滤光片并被光强倍增管接收。若待测物体表面偏离焦平面,则反射光将被滤光片阻挡。在测量过程中,通过PZT驱动器调整物镜与待测物体的距离,以寻找最佳焦平面。当接收到的光信号达到最大值时,表明待测物体表面已处于焦平面位置。此时,激光在物体表面形成一个焦点,通过相关数学模型可计算出该焦点处的高度信息。通过对物体表面各点进行逐一测量,便可获取整个表面的三维形貌数据。
二、发展历程
尽管共聚焦扫描技术在测量精度方面具有显著优势,但由于每次垂直扫描仅能测量一个点的高度,因此需借助高精度三轴运动平台实现逐点扫描,导致测量过程较为耗时。为提高测量效率,研究人员对共聚焦扫描技术进行了诸多改进,例如数字微镜法和Nipkow转盘法等多光束并行共聚焦技术。这些改进方法能够在单次扫描过程中同时测量多个点的高度信息,从而显著缩短了测量时间,提高了测量效率。
以上就是“如何用共聚焦扫描技术测量光学结构表面?”的相关介绍,如果您想要了解更多关于光学设备的知识,欢迎关注欧光科技。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
