关于激光切割玻璃及其机器的十项须知
激光切割玻璃是一项复杂工艺,要求操作者事先掌握若干关键知识。以下为关于激光切割及其设备应了解的十大要点:
1、钠钙玻璃更易切割:
钠钙玻璃虽较硼硅酸盐玻璃弹性差,但价格低廉且易于加工。经激光束熔化后仍能抗裂,尤其适用于激光切割。
2、激光切割机速度快于传统方法:
激光切割机在切割速度上远超人工,且降低玻璃破裂风险,无需担心复杂形状和设计带来的挑战。
3、激光切割玻璃无需打磨:
与传统玻璃切割相比,激光切割产生的边缘更为干净、光滑,省去后续打磨工序。
4、高功率激光可能导致烧痕:
高功率激光器在切割玻璃时可能产生烧痕,而低功率紫外激光则效果更佳。
5、避免使用手持激光切割机:
手持激光切割机可能引入人为误差,对于追求精度和准确度的小型企业而言,CNC玻璃激光切割机更具价值。
6、使用短脉冲激光切割玻璃:
短脉冲激光可在短时间内沉积足够能量熔化薄材料,重复通过可使低功率激光切割厚玻璃板。
7、激光功率并非决定性因素:
多数玻璃切割仅需30-40WCO2激光器,更高功率并不会带来额外益处。
8、可使用二氧化碳、二极管及光纤激光器切割玻璃:
激光类型对切割效果影响不大,关键在于选择合适激光器以节省维护和能源成本。
9、优质伺服电机确保精确切割:
激光切割精度不仅取决于光斑直径、透镜质量及激光源,还受伺服电机和齿轮带控制的影响。
10、激光机成本因机型而异:
选购激光切割设备时需考虑激光器类型、工作区域、激光功率、精度和售后服务等因素,而非一味追求高价机型。
-
光子晶体:让光“听话”的神奇人工结构,开启光学器件革命新篇
1987年,两位科学家Yablonovitch和John的一项发现,为光学领域埋下了一颗颠覆性的种子——他们提出,一种由电介质周期性排列构成的人工材料,能像半导体控制电子一样“囚禁”特定频率的光,这就是后来被称为“光子晶体”的神奇结构。三十多年过去,这项源于理论物理的构想,正从实验室走向现实,成为光通信、能源、传感等领域的关键技术突破口。
2025-04-30
-
密苏里大学研发荧光多离子纳米粘土材料:开启多领域定制化应用新可能
2025年4月29日,密苏里大学的研究团队宣布成功研制出一种具有革命性的纳米材料——荧光多离子纳米粘土。这种基于粘土的微小材料凭借其卓越的可定制性,在能源技术、医疗诊断、环境监测等领域展现出广阔的应用前景,相关研究成果已发表于《材料化学》杂志。
2025-04-30
-
南开大学在螺旋锥形光束研究中取得重要突破为微纳操控技术提供新工具
近日,南开大学许东野教授团队在结构光场调控领域取得重要进展,其关于螺旋锥形光束(Helico-ConicalBeams,HCBs)生成与重构的研究成果发表于国际光学权威期刊《ChineseOpticsLetters》。这项突破通过创新的光学干涉技术,实现了复杂光场的精准操控,为微纳粒子操纵、纳米制造等前沿领域提供了关键技术支撑。
2025-04-30
-
光的干涉现象:从基础物理到前沿技术的演进
阳光下悬浮的肥皂泡表面呈现出斑斓的色彩,这一常见的光学现象本质上是光的干涉效应所致。作为波动光学的核心现象,光的干涉不仅解释了自然界中的视觉奇观,更成为现代精密测量技术的理论基石。从微米级的芯片集成到千米级的引力波探测,干涉原理的应用贯穿于从微观到宏观的广阔领域,深刻推动着科学研究与工程技术的发展。
2025-04-29