激光加工:解锁激光加工金刚石的奥秘
金刚石因其机械硬度极高、热导率优异、化学惰性强、光学带隙大等优点而被广泛应用于制造业。它用于制造刀具、电子封装散热片、高功率激光器上的光学衍射元件,以及半导体行业等。然而,金刚石也被称为“最难加工”的材料之一。目前,主要的金刚石加工方法包括电火花加工、磨料水射流加工、机械加工和激光加工。在这些方法中,激光加工因其非接触加工、成本低、工艺简单和刻蚀效率高而成为一种制造金刚石微结构的先进方法。
金刚石加工中采用的激光可根据脉冲长度与原子晶格碰撞之间的关系分为“热加工”和“冷加工”两类,最典型的是纳秒激光和飞秒激光。这两种激光与电子和晶格的相互作用模式如图1所示。对金刚石而言,其电子和空穴的弛豫时间分别为1.5ps和1.4ps。激光与金刚石的作用导致电子与晶格之间的热传递。对于脉冲持续时间较长的纳秒激光而言,其电子所沉积的激光能量在材料受到激光脉冲照射的时间内便传递给了晶格,从而导致材料加热并达到热平衡状态,如图1(a)所示。这一过程中产生了明显的热效应,因此称之为“热加工”。而对于飞秒激光而言,其激光脉冲宽度小于电子声子相互作用的时间尺度,因此电子沉积的激光能量无法传递给离子,激光脉冲辐照即告结束。此时,离子的温度较低,因此被称为“冷加工”,见图1(b)。

图1激光与电子、晶格相互作用模型。(a)纳秒激光

图1激光与电子、晶格相互作用模型。(b)飞秒激光
通常情况下,纳秒激光的烧蚀过程对样品具有热破坏性,其宏观表现是加工产生较大的热影响区。日本庆应义塾大学的
NozomiTakayama将纳秒激光加工钻石产生的缺陷分为四类:开裂、波纹、变形槽道以及碎屑沉积,并对各种缺陷的产生原因进行了详细解释。裂纹是由于加工过程中急剧的温度变化引起的;波纹则是由于凹槽壁反射激光而产生干涉效应;凹槽的变形及其与高斯激光的偏差是由于激光诱导等离子体增强吸收所致;而沉积的碎屑主要有两种类型:圆形的石墨碳颗粒和较小的不规则金刚石颗粒。
在飞秒激光加工中,激光能量通过光诱导光学击穿效应作用于激光辐照区域,导致大量电子离化,从而引起结构和相组成的改变。对于金刚石而言,这种过程导致了sp3相向sp2相的转变,随后发生了照射区域的材料烧蚀。飞秒脉冲激光能够在较低的平均功率下产生极高的功率密度(可达数GW),这种高功率密度能够使金刚石晶格中的C-C共价键发生解离。激光作用下的金刚石-石墨化转变导致碳原子间距增加,降低了态密度并改变了固体的物理化学性质。由于极短的脉冲持续时间,最大程度地减少了热影响区的形成可能性,从而以最小的热损伤精确加工金刚石表面结构。
激光在金刚石材料加工中的应用研究主要集中在激光切割、激光打孔、微槽道加工以及激光平整化等领域。随着金刚石化学气相沉积(CVD)技术的日益成熟,金刚石加工问题逐渐成为金刚石应用的主要限制性因素。在这一背景下,激光加工凭借其优异的加工性能逐渐成为金刚石加工的主流方法。
通过激光技术,我们能够更有效地塑造金刚石,解锁其在制造业中的巨大潜力,为技术发展开辟新的可能性。
声明:本文章中文字或图片涉及版权等问题,请作者在及时联系本站,我们会尽快处理。
参考文献:
[1]叶盛,赵上熳,邢忠福,等.激光技术在金刚石加工中的研究及应用进展[J].红外与激光工程,2024,53(02):44-65.
[2]汪晖,温秋玲,黄辉,等.飞秒激光加工CVD单晶金刚石的烧蚀特征和机理研究[J].光子学报,2023,52(12):51-65.
[3]Takayama N, Yan J.Mechanisms of micro-groove formation onsingle-crystal diamond by a nanosecond pulsed laser[J].JournalofMaterialsProcessingTechnology,2017,243:299-311.
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
