解读激光束的反射和吸收的原理
如果被加工表面反射过多的光能,则吸收的能量减少,工作效率降低,并且反射光可能对光学系统造成损害。因此激光束的反射和吸收与激光加工密切相关。
吸收和反射的值与以下关系相关:
反射率 =1- 吸收率(对于不透明材料)或
反射率 =1- 吸收率 - 透射率(对于透明材料)
光在介质中的传输
从空气到不透明的完美平坦干净金属表面的法线入射角的反射系数 R 可以使用以下公式计算:
R=[(1-n) 2 +k 2 ]/[(1+n) 2 +k 2 ]
不透明金属表面的吸收率A为:
A=1–R=4n/[(n+1) 2 +k 2 ]
其中n是材料的折射系数,k是材料的消光系数。这两个值都可以在手册中查找。我们在下表中列出了一些值。请记住,这些光学特性是辐射波长的函数,并随温度而变化。
接下来我们研究影响反射率和吸收率的因素。
波长:波长越短,光子的能量越高 。波长较短的光子比波长较长的光子更容易被材料吸收。因此,R 通常随着波长变短而减小,而当光子能量增加时吸收增加。
温度:随着温度升高,声子数量将会增加。电子更有可能与结构相互作用,而不是与入射光子相互作用。因此,随着温度的升高,反射率下降,吸收率增加。
入射角和偏振面:反射率随入射角和偏振面而变化。如果偏振面位于入射面,则该光线称为平行光线(“p”光线);如果偏振面垂直于入射面,则该射线称为“s”射线。“p”射线和“s”射线的完美平面的反射率系数为:
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]
其中f是入射角,n是折射系数,k是材料消光系数。我们看到这里p射线和s射线的反射率是不同的,p射线比s射线更容易被材料吸收。
例:利用表中的数据,求出Nd:YAG激光束辐射在Al表面上的s射线和p射线反射和吸收,入射角为60度。
解:对于铝,k=8.5,n=1.75,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(1.75-cos60)^2+8.5^2]/[(1.75+cos60)^2+8.5^2]=73.8125/77.3125=0.955=95.5%
s 射线吸收率 =1-Rs=4.5%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(1.75-1/cos60)^2+8.5^2]/[(1.75+1/cos60)^2+8.5^2]=72.3125/86.3125=83.8%
p 射线吸收 =1-Rp=16.2%
例:利用表中的数据,求 Nd:YAG 激光束辐射在 Fe 表面上的 s 射线和 p 射线反射和吸收,入射角为 60 度。
解:对于铁,k=4.44,n=3.81,
R s =[(n-cos f ) 2 +k 2 ]/[(n+cos f ) 2 +k 2 ]=[(4.44-cos60)^2+3.81^2]/[(4.44+cos60)^2+3.81^2]=77.18%
s 射线吸收率 =1-Rs=22.82%
R p =[(n-1/cos f ) 2 +k 2 ]/[(n+1/cos f ) 2 +k 2 ]=[(4.44-1/cos60)^2+3.81^2]/[(4.44+1/cos60)^2+3.81^2]=36.56%
p 射线吸收 =1-Rp=63.44%
-
光子晶体:让光“听话”的神奇人工结构,开启光学器件革命新篇
1987年,两位科学家Yablonovitch和John的一项发现,为光学领域埋下了一颗颠覆性的种子——他们提出,一种由电介质周期性排列构成的人工材料,能像半导体控制电子一样“囚禁”特定频率的光,这就是后来被称为“光子晶体”的神奇结构。三十多年过去,这项源于理论物理的构想,正从实验室走向现实,成为光通信、能源、传感等领域的关键技术突破口。
2025-04-30
-
密苏里大学研发荧光多离子纳米粘土材料:开启多领域定制化应用新可能
2025年4月29日,密苏里大学的研究团队宣布成功研制出一种具有革命性的纳米材料——荧光多离子纳米粘土。这种基于粘土的微小材料凭借其卓越的可定制性,在能源技术、医疗诊断、环境监测等领域展现出广阔的应用前景,相关研究成果已发表于《材料化学》杂志。
2025-04-30
-
南开大学在螺旋锥形光束研究中取得重要突破为微纳操控技术提供新工具
近日,南开大学许东野教授团队在结构光场调控领域取得重要进展,其关于螺旋锥形光束(Helico-ConicalBeams,HCBs)生成与重构的研究成果发表于国际光学权威期刊《ChineseOpticsLetters》。这项突破通过创新的光学干涉技术,实现了复杂光场的精准操控,为微纳粒子操纵、纳米制造等前沿领域提供了关键技术支撑。
2025-04-30
-
光的干涉现象:从基础物理到前沿技术的演进
阳光下悬浮的肥皂泡表面呈现出斑斓的色彩,这一常见的光学现象本质上是光的干涉效应所致。作为波动光学的核心现象,光的干涉不仅解释了自然界中的视觉奇观,更成为现代精密测量技术的理论基石。从微米级的芯片集成到千米级的引力波探测,干涉原理的应用贯穿于从微观到宏观的广阔领域,深刻推动着科学研究与工程技术的发展。
2025-04-29