激光技术在日常生活中的应用
激光技术广泛应用于日常生活中,涵盖工业、医疗、科研、信息和军事等多个领域。以下是一些具体的应用示例:
一、工业应用:
1、材料加工:激光切割、激光焊接、激光打孔、激光切割、激光打标等,用于金属和非金属材料的加工。
2、测量控制:激光测距、激光雷达等,用于精确测量和导航。
二、医疗应用:
1、治疗:激光手术治疗、光动力治疗、弱激光生物刺激非手术治疗等。
2、诊断:激光还用于生命科学研究和疾病诊断。
三、科学研究应用:
1、激光光谱分析技术、非线性光学、超快激光器、激光化学、量子光学等,用于科学研究和技术开发。
四、商业应用:
1.激光笔(激光笔、指星笔等)用于会议、教学、导游等,但应注意使用情况,避免损坏物品。
五、其他应用:
1、激光灭蚊产品利用激光来吸引和消灭蚊子,具有快速、准确的优点。
2、激光唱片,用于音乐播放。
激光技术的应用不仅提高了生产效率和生活质量,而且促进了多个学科和技术领域的发展。随着技术的进步,激光技术将继续在更多领域发挥重要作用。
延伸阅读:
激光技术是一种基于量子电动力学原理的光源技术。它激发特定的工作物质,使其内部粒子(通常是原子或分子)跃迁到高能级。在退激发过程中释放大量同频、同相、同偏振方向的光子,形成高度集中的光束。激光的主要特点如下:
1、方向性好:激光束方向性好,几乎完全平行,发散度极低,可在长距离保持聚焦。例如,在早期的实验中,激光被照射到月球表面,形成的光斑极小。
2、极高的亮度:激光的亮度比传统光源高出多个数量级。这是因为激光的光强集中在狭小的空间内,使得能量密度极高。
3、单色性好:激光的光谱宽度极窄,即颜色纯度极高。这使得激光在科学研究和精密测量方面具有独特的优势,例如用于精确测量光速、物理常数等。
4、相干性好:激光光波的频率、振动方向和相位高度一致,可以在空间中实现稳定的干涉效果,这对于实现光学干涉、全息成像和光纤通信等应用至关重要。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30