光学镜头加工的三类技术
技术文章|光学镜头加工的三类技术
光学镜头加工过程中有极高的精度要求和复杂的技术要求。光学镜头加工涉及三种核心的加工技术:注塑成型法、模压成型法和冷加工成型法是,每一种都有其优势和应用场景。
一、注塑成型法:
注塑成型法采用的原料通常是光学塑料,常见的光学塑料有PMMA(聚甲基丙烯酸甲酯)、PS(聚苯乙烯)、PC(聚碳酸酯**)等,它们具有透光率高、重量轻、成本低的特点,适合批量化生产。在制造过程中,通过使用注塑机设备,将原材料加热到流动状态,并以很高压力和较快速度注入精密模具中,经过一定时间的冷却后,将零件从模具中分离出来,就可以得到两面光亮的透镜了。光学塑料热胀系数比玻璃大,因此注塑成型法主要用来生产低精度的批量化非球面光学元件,受加工过程中冷却固化收缩的影响,注塑类光学元件的面形精度通常在PV值1~2um的量级。
应用领域:该技术常用于生产眼镜和一些手机镜头,适用于大批量生产。
材料特点:通常采用塑料透明材料,这种材料相对便宜。
生产过程:通过将熔化的塑料注入模具中,然后在模具中冷却凝固,形成所需的光学镜头形状。
二、模压成型法:
模压成型法是将待模压的玻璃放到模具内加热并将上下两模具合拢,玻璃要热软化后,将其压制成型,随后再做退火、冷却并分离,获得非球面镜片。模具是经过加工过的耐高温钢制品,一般是由单点金刚石车床车削而成,因此,模压成型法的产品精度受限于模具面形精度,通常模压镜片的PV值(峰值与谷值之差)在0.2~0.4um的量级,可满足常规精度镜头需求。
应用领域:普通光学镜头的生产常采用模压成型法,适用于一定批量的生产,并需要制作相应的模具。
材料特点:使用不同材料,根据特定的光学要求选择透明材料。
生产过程:制作模具后,通过将材料加热至可塑性状态,然后在模具中施加压力,使其取得所需形状,最后冷却凝固。
三、冷加工成型法:
冷加工法是最古典的元件加工方法,属于去除式加工,通常分为粗磨、精磨和抛光三大工序,加工的材料可以是玻璃、陶瓷或者晶体材料,能够获得最高的加工精度。当非球面的精度要求较高时,采用磁流变抛光技术**(MRF)和离子束抛光技术(IBF)来实现面形的精修。因为光学设备通常非常的昂贵,因此在精修阶段,手修法也仍然被采用,通过手持抛光小工具,来对非球面产品做抛光和修形,从而提升非球面的面形精度。
应用领域:主要用于科研人员订制的单个成像镜头,以及一些对质量和精度要求较高的光学元件,如光刻机与天文望远镜。
材料特点:通常使用高质量、高透明度的材料,以满足特殊光学需求。
生产过程:通过冷加工方式,如切割、磨削、抛光等手工或半自动工艺,精确地形成光学镜头的形状,适用于小批量生产和个性化定制。
总体而言,这三种技术各自适用于不同的应用场景和生产需求,涵盖了从大批量生产到小批量或个性化定制的多个领域。
-
光学镀膜的带隙原理与弱吸收仪的薄膜吸收解析
在光学镀膜技术中,“带隙”是一个核心概念,它如同为光设定的“专属禁区”,深刻影响着光的传播与调控。而光学薄膜的吸收特性则是另一个关键指标,直接关系到光学器件在高功率激光环境下的稳定性与寿命。欧光科技的PLI弱吸收测试仪,凭借先进的测量技术,为光学薄膜吸收特性的精确表征提供了重要支持。
2025-07-17
-
拉曼光谱特征峰展宽现象的成因解析及应用价值
拉曼光谱是表征物质微观结构的重要手段,其特征峰的宽度(通常以半高全宽FWHM表征)蕴含丰富的物理化学信息。特征峰展宽现象并非随机产生,而是样品内部结构、外界环境及测试条件综合作用的体现。深入探究这一现象的本质,有助于精准解读材料的固有特性。
2025-07-17
-
哈佛大学研发新型可调谐激光器:以创新架构突破技术瓶颈
近日,哈佛大学工程与应用科学学院与维也纳工业大学的联合研究团队,通过芯片级的精巧设计研发出一款新型可调谐半导体激光器,成功打破了这一技术瓶颈。该激光器整合了宽范围波长调谐、高精度输出、小型化封装与低成本制备等多重优势,相关研究成果已发表于《Optica》期刊。
2025-07-17
-
光子穿透人脑?深层成像技术突破“不可能”之限
大脑作为调控人类思维与行为的核心中枢,其深层运作机制长期以来因组织结构的包裹而难以被解析,宛如一座待解的迷宫。近日,英国格拉斯哥大学研究团队在《Neurophotonics》发表的突破性成果,首次实现光子穿透成人大脑并完成深层成像,一举打破了困扰学界数十年的衰减壁垒,为脑科学研究及临床诊断领域开辟了全新路径。
2025-07-16