实现从二维到准三维的超快速成像技术
北京理工大学的科学家研发出超快准三维技术,克服了二维图像信息缺失、特征不完整的缺点,可以实现超快速成像三维特征的过程分析。

该研究发表在《极限制造国际》杂志上,展示了如何基于二维信息收集来实现三维特征分析。
通过垂直偏振成像,获得了高信噪比的反射和透射图像。通过比较两种观点,成功地区分了相变机制,并阐明了等离子体衍射现象。
此外,重建的准三维图像使用欧拉角旋转乘法,可以分析等离子体任意截面上的光学特性,揭示早期等离子体收缩和发散形态在三维空间中的不对称性。
该研究通讯作者、北京理工大学讲座教授姜澜表示:“这种准三维成像方法突破了原始观测维度的限制,增强了我们全面分析超快过程的能力。未来,它将在揭示激光与物质之间的相互作用方面发挥重要作用。”
北京理工大学的蒋博士研究生、该论文的第一作者Yiling Lian说:“利用准三维成像方法,我们可以分析超快过程在三维空间中的形状和性质变化。”
虽然探索激光诱发的超快过程在强场物理、流体力学和先进制造中至关重要,但超快过程很难深入理解,因为激光场的空间分布不均匀,相互作用时会触发各种非平衡过程随着材料的变化,导致激发区域具有不同的光学特性和复杂的形态。
为了进一步研究潜在的烧蚀机制,研究人员使用飞秒泵浦探针成像技术来研究瞬态光学特性。然而,这些烧蚀过程对信号采集期间目标材料的光学响应有显着影响。因此,仅根据采集的反射图像来区分这两个因素对反射率的单独影响是具有挑战性的。
然而,传统的单视成像技术将三维信息投影到二维平面上,可以有效分析二维过程的演化。然而,在强激励下,物质的形状和性质在三维空间发生变化,并伴随着折射、散射等干扰信号。
姜教授问道:“我们能否利用双目成像的原理,引入另一种成像视角?”
蒋认为,由于尺度超短,两个视点的时间和空间同步对于实验来说很重要。对成功至关重要。在蒋的指导下,连利用正交偏振光从两个视点同时成像,实现了高质量的信号采集。他们从两个角度整合图像特征来重建三维矩阵。他们将这种方法称为“准三维成像”。
研究结果表明,准三维成像不仅比以往的成像方法提供了对等离子体动力学更全面的理解,而且有潜力揭示强场物理、流体动力学和切削等领域的各种复杂的超快现象方面具有广阔的潜力。
延伸阅读:
二维到准三维超快成像技术具有一些显着的特点,这使其在科学研究和工程应用中具有独特的优势。
1.该技术可以实现二维到准三维的快速转换。这意味着它不仅可以捕获物体的两个维度信息,还可以高精度、真实地重建物体的三维结构,从而揭示物体的深度信息和空间结构。
2.这种超快成像技术具有极高的时间分辨率。它可以在极短的时间内捕捉物体的动态变化过程,如光束传播、化学反应、物理变形等。这使得研究人员能够实时观察和分析这些超快过程,从而更深入地了解其性质和机制。
3.准三维成像技术通过垂直偏振成像与欧拉角旋转的相乘,成功实现了对物体任意截面光学特性的分析。这有助于研究人员全面分析超快过程,揭示三维空间中物体形状和性质的变化。
值得一提的是,这种超快成像技术突破了原有观察维度的限制。传统的单视成像技术只能将三维信息投影到二维平面上,无法有效分析三维过程的演化。准三维成像技术可以提供更全面、更真实的信息,增强科研人员综合分析超快过程的能力。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
