什么是光学测量技术?
1.光学测量技术是以光为测量介质,通过光学元件测量性能参数的技术。它基于物理和光学原理,利用光投射和光读取,根据测量对象的形状和形态来确定测量对象的参数。

2.光学测量技术可细分为直接光学测量和间接光学测量。直接光学测量主要利用光的显微效应,基于测量对象的光学成像来测量几何尺寸,如照相测量和数字测量。间接光学测量利用光的衍射、反射或吸收等物理现象和光学过程来测量形状、折射率、光密度、折射率等参数。
3.在现代工业中,光学测量技术广泛应用于各个领域的检测,如金属制品加工行业、模具、塑料、五金、齿轮、手机等行业的检测,以及工业中的产品开发、模具设计、手扳制作、原创雕刻、RP快速成型、电路测试等领域。主要仪器有二次元、工具显微镜、光学影像测量仪、光学影像投影仪、三次元、三坐标测量机、三维激光抄数机等。
4.随着技术的发展,光学测量技术也在不断完善和创新,例如将人工智能和机器学习技术融入光学图像测量系统中,自动识别测量特征、优化测量路径并提供智能数据分析,提高测量水平准确性和效率。同时,3D扫描技术的发展也为光学影像测量提供了更多可能,可以快速扫描工件并重建其三维模型,适合复杂几何形状和小型零件的精确测量。
延伸阅读:
光学测量技术具有一系列显着的特点,使其在各个领域都有出色的应用。
1.光学测量技术具有非常高的精度。这主要是由于光的波长短、传播速度快、方向性好,使得测量可以达到微米甚至纳米级别。
2.光学测量技术具有非接触式测量的优势。这意味着在测量过程中,测量仪器不需要与被测物体直接接触,从而避免了因接触而可能造成的损坏或误差。这种非接触式测量方法特别适合易碎、易变形或高温的物体。
3.光学测量技术还具有实时性和动态性。它可以快速捕捉物体的变化信息并进行实时测量和动态分析。这在需要实时监控的场合,如工业自动化生产线、环境监测等领域具有很大的应用价值。
4.光学测量技术还具有抗干扰能力强、应用范围广的特点。它可以在各种复杂环境下进行精确测量,包括高温、高压、强电磁场等恶劣环境。同时,光学测量技术不仅适用于宏观物体的测量,还可以应用于微观世界,例如细胞、分子等微小结构的观察和分析。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
