可食用的激光器有哪些?
科学家们正在研发微型电子和光子设备,可以安全地植入体内以监测来自身体的重要信号;在病还处于萌芽阶段并帮助提供正确剂量的药物。理想的装置是一种制造成本低廉并且在完成其使命后可以直接被人体吸收的装置。

1.事实上,生物相容性植入式发光装置已经存在,但科学家在临床应用中发现,如果它们能够发射激光,可能会更有用。自20世纪70年代以来,研究激光的物理学家开始尝试制造一些类似于“果冻激光器”的有机物质。虽然味道不像果冻那么甜,但仍然可以安全食用,因为它们是由一些精心挑选的无毒材料制成的。
2.随后,科学家们使用了大量美国食品和药物管理局(FDA)批准的物质进行测试,发现维生素B2是发射激光的不错选择。为了制造维生素B2激光,科学家将维生素B2溶液喷洒到柔软的生物高聚物薄膜上。随着溶液慢慢蒸发,形成液滴,维生素落入薄膜内并自组装成充满激光燃料的“光学谐振器”。在激光装置中,光辐射会沿着谐振腔的轴线来回反射,多次穿过材料,从而放大数倍,最终形成强大的、集中的光束“激光”。通常,这些谐振腔由大而笨重的镜子组成。
科学家们相信他们的“维生素激光”最终可以用作检测特定疾病的生物传感器。美国塔夫斯大学生物光子学专家费奥伦茨·奥门托教授认为,虽然这种维生素激光令人兴奋,但实际应用可能还需要几年的时间。
延伸阅读:
1.激光器是专门设计用于发射激光的装置,它涉及复杂的物理结构和原理,如谐振腔结构、增益介质、特定输出波长等。食物是供人类或动物食用的物质,它们通常是为了提供营养和能量而存在。
2.将激光的概念与食品结合起来以当前的技术和科学理解是不现实的。激光器的制造材料、工作原理和使用条件与食品有着本质的不同。因此,从目前的科学技术来看,可食用激光器并不存在。
3.尽管某些食物或物质在某些条件下可能表现出类似激光的特性,但这并不等同于真正的激光器。例如,某些生物体在受到特定刺激时可能会发出荧光,但这种荧光在性质、用途和工作原理上与激光有本质的不同。
总之,根据目前的技术和科学认识,不存在可食用激光器的概念。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
