有机发光材料的选用原则
1.有机材料的特性深刻影响着元件光电性能的表现。在阳极材料的选择上,材料本身必须具有较高的功函数和可透光性。因此,需要一种具有4.5eV-5.3eV的高功函数、性能稳定、透光率高的ITO透明导电薄膜,广泛用于阳极。在阴极部分,为了提高元件的发光效率,电子和空穴的注入通常需要Ag、Al、Ca、In、Li、Mg等低功函数金属或低功函数复合金属来制作阴极(例如:Mg-Ag 镁银)。
2.适合传输电子的有机材料不一定适合传输空穴,因此有机发光二极体的电子传输层和空穴传输层必须使用不同的有机材料。目前,最常用于制作电子传输层的材料必须具有高的薄膜稳定性、热稳定性和良好的电子传输性能,通常使用荧光染料化合物。如Alq、Znq、Gaq、Bebq、Balq、DPVBi、ZnSPB、PBD、OXD、BBOT等。电洞传输层的材料属于芳香胺类荧光化合物,如TPD、TDATA等有机材料。
3.有机发光层的材料必须具有固态荧光强、载子传输性能好、热稳定性和化学稳定性好、量子效率高以及能够真空蒸镀的特点。通常,有机发光层所使用的材料通常与电子传输层或电洞传输层所使用的材料相同,例如,Alq广泛应用于绿光,Balq和DPVBi广泛应用于蓝光。
一般来说,OLED根据发光材料可分为两种:小分子OLED和聚合物OLED(也称PLED)。小分子OLED与聚合物OLED的区别主要体现在器件的制备工艺不同:小分子器件主要采用真空热蒸发工艺,而聚合物器件则采用旋涂或喷涂印刷工艺。小分子材料主要生产厂商有:Eastman、Kodak、出光兴产、东洋INK制造、三菱化学等;高分子材料主要厂商有:CDT、Covin、Dow Chemical、住友化学等。目前,全球与OLED相关的专利有1400多项,其中基础专利有3项。小分子OLED的基础专利由美国Kodak公司拥有,高分子OLED的专利由英国CDT(Cambridge DisPlay Technology)和美国Uniax公司拥有。
延伸阅读:
有机发光材料通常分为以下几类:
1.小分子有机发光材料:这类材料通常由几个至几十个原子组成的有机小分子合成,它们具有精确的分子结构,易于纯化和成膜,可用于制造高分辨率、高性能的有机发光二极管(OLED)显示器。
2.聚合物有机发光材料(Polymer OLED、PLED或Polymer Light-Emitting Diodes):由高分子有机聚合物组成,具有良好的机械柔性和加工性能,适用于大面积、低成本的柔性显示和照明产品。
3.有机配合物发光材料:包括金属配合物的有机发光材料,这些材料往往由于金属中心的影响而具有独特的发光性能,例如磷光发射、热稳定性和长寿命。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30