激光材料的概念和特点
1.原子吸收能量后,从低能态到高能态的过程称为激发过程。相反,处于激发态的原子不稳定,在发射光子时总是自发地返回到低能态。这个过程称为“自发辐射”。如果原子吸收外部光能并跃迁到高能级,然后由于外部光引起的辐射又回到低能态,这个过程称为“受激发射”。然而,只有采用一种方法,使材料中的大量粒子同时处于激发态,并通过外部光感应,使所有处于激发态的粒子完成受激辐射回到较低的状态。能量状态几乎同时,物质就能发射出强大的能量波。一束光被称为“激光”。例如,激光产生过程就像用水泵将水抽到水塔顶部,然后突然打开闸门,这时,水会以强大的力量喷出。当然,激光产生过程比上面的例子要复杂得多。
2.在固体激光器中,能产生激光的晶体或玻璃称为激光工作材料。激光工作材料由两部分组成:基质和活化离子。基质材料为激活离子提供合适的存在和工作环境,激活离子完成激光产生过程。常用的活化离子主要是过渡金属离子,如铬、钴、镍等离子和稀土金属离子,如钕离子等。
3.固体激光器主要由闪光灯、激光工作材料(如红宝石激光晶体)和反射腔镜片组成。反射镜表面镀有介质膜,一种是全反射镜,另一种是部分反射镜。掺铬红宝石是最早发现和使用的激光工作材料之一,已研制成功数十种可用的激光晶体。当使用不同的激活离子、不同的基质材料以及不同波长的光激发时,就会发射出各种波长的激光。
4.早期的固体激光器采用闪光灯或其他激光器来完成激光工作材料中原子的受激辐射过程,这基本上是将某种形式的光能转换为激光能的过程。如何将电能直接转化为激光的能量一直是人们的梦想,近年来,科学家成功研制出半导体激光器,一旦通电即可发射激光。通过选择不同的半导体材料和不同的制造工艺,可以生产出不同功率、不同波长的激光器。半导体激光器的出现,大大缩小了激光器的尺寸。米粒大小的半导体芯片在连接到电源时会发出神奇的激光。目前,半导体激光器已在许多方面得到广泛应用。
延伸阅读:
激光材料的特性主要体现在其独特的物理性质,这些特性使激光器广泛应用于许多领域。以下是激光材料的一些主要特性:
1.高能量密度:激光器比普通光源具有高得多的能量密度,这使得激光器在切割、焊接和钻孔等材料加工过程中非常有效。
2.单色性高:激光是单色光,即其频率非常纯净。这使得激光器在光谱分析、光学传感器和高精度测量中发挥着重要作用。同时,高单色性也使得激光能够使材料吸收其特定波长的光能,从而实现加工。
3.高方向性:激光束准直度高,发散角小,这意味着激光可以聚焦到很小的直径,实现高精度、高分辨率的操作。该特性在医疗、材料加工和通信领域有着广泛的应用。
4.高相干性:激光器的光波是相干的,即光的波峰和波谷保持稳定的相对位置。这一特性使得激光器广泛应用于干涉测量、全息术和激光雷达等领域。
此外,激光材料在制造过程中对质量要求极高。例如,在生长激光晶体时,所用氧化物的纯度要求达到非常高的标准,晶体必须无应变和夹杂物,折射指数无变化,照射后不得产生色心且易于产生色心。这些特性使得激光材料广泛应用于医疗、通信、制造和科学研究等领域。激光3D打印等技术正在逐步改变传统制造方法,提高生产效率和灵活性。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30