激光传感器简介和特点
激光传感器是使用激光技术进行测量的传感器。它由激光器、激光探测器和测量电路组成。激光传感器是一种新型测量仪器,其优点是可实现非接触远距离测量、速度快、精度高、测量范围大、抗光、电干扰能力强等。
激光传感器工作时,激光发射二极管首先向目标发射激光脉冲。激光被目标反射后,向各个方向散射。部分散射光返回传感器接收器,被光学系统接收,并成像到雪崩光电二极管上。雪崩光电二极管是一种具有内部放大功能的光学传感器,因此它可以检测极微弱的光信号并将其转换为相应的电信号。
最常见的是激光测距传感器,它可以通过记录和处理光脉冲从发送到返回和接收的时间来测量目标距离。由于光传播速度如此之快,激光传感器必须极其准确地测量传输时间。
例如,光速约为3x108m/s,为了达到1mm的分辨率,传输时间测距传感器的电子电路必须能够解析以下极短的时间:
0.001m/(3x108m/秒)=3ps
要区分3ps的时间,这对电子技术要求过高,而且实现成本太高。但如今的激光测距传感器巧妙地避开了这一障碍,利用简单的统计原理,即平均法则,实现了1mm的分辨率并保证了响应速度。
利用激光高方向性、高单色性、高亮度等特点,可以实现非接触式远距离测量。激光传感器常用于测量长度、距离、振动、速度、方位等物理量,还可用于探伤和空气污染物的监测。
延伸阅读:
激光传感器具有许多独特的特性,这使得它们在许多领域得到广泛应用。以下是激光传感器的一些主要特点:
1.高精度:激光传感器可以达到微米级的测量精度,因此可以非常准确地获取目标物体的位置、尺寸等信息。
2.高速测量:激光传感器具有毫秒级的响应速度,这使得它在快速移动物体的测量中非常有用,例如自动化生产线上的物体检测和测量。
3.非接触式测量:激光传感器利用光电效应原理进行测量,无需接触被测物体,因此可以避免测量过程中的干扰和损坏。这非常适合一些对测量对象非常敏感的测量场景,例如珍贵文物的保护、医药生产等领域。
4.精确距离测量:通过测量激光脉冲的往返时间,激光传感器可以精确计算出物体与传感器之间的距离。
5.测量范围广:激光传感器可以在几厘米到数百米的较远距离内进行精确测量。
6.抗干扰能力强:激光传感器能够在复杂环境下保持稳定的测量性能,具有良好的抗干扰能力。
-
突破催化依赖!中山大学团队PNAS新成果:激光常温常压下实现全水分解,同步制备氢气与过氧化氢
在全球“双碳”目标推进及绿色生产需求升级的背景下,清洁氢能开发与过氧化氢环保制备已成为能源化工领域的核心议题。传统制备技术普遍面临催化剂依赖、高能耗及污染排放等瓶颈,严重制约行业可持续发展。近日,中山大学闫波教授团队在《美国国家科学院院刊》(PNAS)发表的研究成果,为破解这一困局提供了革命性方案:无需任何催化剂,仅通过脉冲激光即可在常温常压条件下直接实现全水分解,同步生成氢气与过氧化氢,且光氢能量转换效率达2.1%,为绿色能源与化工产业开辟了全新技术路径。
2025-10-13
-
哥伦比亚大学研发芯片级高功率频率梳,助力数据中心光源升级
纽约,2025年10月8日—哥伦比亚大学工程与应用科学学院的研究团队研发出一种新技术,无需依赖体积庞大且成本高昂的激光器与放大器,即可构建高功率频率梳。该团队的研究成果实现了频率梳功率向芯片的集成,进而为紧凑式、高功率、多波长光源的开发提供了可能。研究人员认为,所研发的技术方法与系统可应用于先进数据中心——此类数据中心虽已采用光纤链路传输数据,但当前仍普遍依赖单波长激光器。
2025-10-11
-
飞秒光脉冲的3D可视化:用代码“看见”看不见的光
飞秒光脉冲是一种特殊的激光信号,它的体积极小(仅几微米×几微米×几十微米),却蕴含万亿瓦量级的峰值功率——由于尺度远超出肉眼可见范围,我们无法直接用眼睛观察它。但借助不到100行的MATLAB代码,就能将这种抽象的电磁波转化为可旋转、可“飞行”的3D“光子云”(俗称“光蒲公英”)。更重要的是,这一可视化结果严格遵循麦克斯韦方程,兼具科学性与直观性。
2025-10-11
-
光模块产业“卡脖子”问题剖析,从核心芯片到全产业链的突围路径
AI集群的数据流转需求突破每秒TB级,全球数据中心带宽需求呈现每两年翻倍的增长态势,光模块作为承载光信号传输的核心器件,已成为支撑数字经济发展的关键基础设施。据行业统计数据,中国企业在全球光模块市场的份额已超过60%,在下游封装与系统集成领域形成显著竞争优势。然而,深入剖析产业结构可见,我国光模块产业呈现“倒金字塔”式发展格局——真正制约产业高质量发展、形成“卡脖子”风险的环节,并非下游组装领域,而是光模块的核心组件“激光器芯片”,以及支撑芯片制造的上游材料与设备体系。
2025-10-11