激光传感器简介和特点
激光传感器是使用激光技术进行测量的传感器。它由激光器、激光探测器和测量电路组成。激光传感器是一种新型测量仪器,其优点是可实现非接触远距离测量、速度快、精度高、测量范围大、抗光、电干扰能力强等。
激光传感器工作时,激光发射二极管首先向目标发射激光脉冲。激光被目标反射后,向各个方向散射。部分散射光返回传感器接收器,被光学系统接收,并成像到雪崩光电二极管上。雪崩光电二极管是一种具有内部放大功能的光学传感器,因此它可以检测极微弱的光信号并将其转换为相应的电信号。
最常见的是激光测距传感器,它可以通过记录和处理光脉冲从发送到返回和接收的时间来测量目标距离。由于光传播速度如此之快,激光传感器必须极其准确地测量传输时间。
例如,光速约为3x108m/s,为了达到1mm的分辨率,传输时间测距传感器的电子电路必须能够解析以下极短的时间:
0.001m/(3x108m/秒)=3ps
要区分3ps的时间,这对电子技术要求过高,而且实现成本太高。但如今的激光测距传感器巧妙地避开了这一障碍,利用简单的统计原理,即平均法则,实现了1mm的分辨率并保证了响应速度。
利用激光高方向性、高单色性、高亮度等特点,可以实现非接触式远距离测量。激光传感器常用于测量长度、距离、振动、速度、方位等物理量,还可用于探伤和空气污染物的监测。
延伸阅读:
激光传感器具有许多独特的特性,这使得它们在许多领域得到广泛应用。以下是激光传感器的一些主要特点:
1.高精度:激光传感器可以达到微米级的测量精度,因此可以非常准确地获取目标物体的位置、尺寸等信息。
2.高速测量:激光传感器具有毫秒级的响应速度,这使得它在快速移动物体的测量中非常有用,例如自动化生产线上的物体检测和测量。
3.非接触式测量:激光传感器利用光电效应原理进行测量,无需接触被测物体,因此可以避免测量过程中的干扰和损坏。这非常适合一些对测量对象非常敏感的测量场景,例如珍贵文物的保护、医药生产等领域。
4.精确距离测量:通过测量激光脉冲的往返时间,激光传感器可以精确计算出物体与传感器之间的距离。
5.测量范围广:激光传感器可以在几厘米到数百米的较远距离内进行精确测量。
6.抗干扰能力强:激光传感器能够在复杂环境下保持稳定的测量性能,具有良好的抗干扰能力。
-
激光焊接质量缺陷的系统性分析与工程化解决方案
激光焊接作为高能量密度精密加工技术,在高端制造领域的应用日益广泛。然而,焊接过程中多因素耦合作用易导致质量缺陷,影响产品可靠性与生产效率。本文基于激光焊接工艺特性,从工艺参数、材料特性、设备系统及环境控制等维度,系统剖析焊接不良成因,并提出工程化解决方案,为构建高品质激光焊接生产体系提供理论与实践参考。
2025-06-13
-
五轴精密零件加工中热变形控制的关键技术研究
在航空航天、医疗器械及高端装备制造领域,五轴精密零件的加工精度直接影响产品性能。热变形作为导致加工误差的主要因素之一,其控制技术已成为精密制造领域的研究重点。本文基于热传导理论与切削工艺原理,系统分析五轴加工中热变形的产生机理,从切削参数优化、刀具系统设计、冷却系统构建、环境控制及智能监测五个维度,提出全流程热变形控制策略,为高精密零件加工提供理论与实践参考。
2025-06-13
-
高功率绿光光纤激光器技术原理研究及工程挑战探讨
在精密激光加工领域,随着铜、铝等高反金属材料在电子器件制造、新能源电池焊接及增材制造等场景的广泛应用,高功率绿光光纤激光器的技术研发已成为国际前沿课题。这类材料对1064nm近红外波段激光的吸收率通常低于5%,而对532nm绿光波段的吸收率可达40%以上。这一特性不仅促使加工能效显著提升,更能通过减少飞溅、稳定熔池等优势,满足精密制造对加工质量的严苛要求。基于此,高功率绿光光纤激光器的技术体系构建与工程化突破,正成为推动激光加工技术升级的关键方向。
2025-06-13
-
光谱滤波如何调控光纤激光器中的两类特殊光脉冲共存
在超快激光研究领域,锁模光纤激光器就像一个精密的"光学实验室",能帮助科学家探索光脉冲的复杂变化。近期,西北大学研究团队有了新发现:他们通过光谱滤波技术,首次实现了类噪声脉冲和耗散孤子这两种特性迥异的光脉冲在光纤激光器中稳定共存,并且能灵活调节它们的波长间隔。这项成果为开发多功能激光光源提供了新思路,相关研究发表在《APLPhotonics》期刊上。
2025-06-13