激光传感器简介和特点
激光传感器是使用激光技术进行测量的传感器。它由激光器、激光探测器和测量电路组成。激光传感器是一种新型测量仪器,其优点是可实现非接触远距离测量、速度快、精度高、测量范围大、抗光、电干扰能力强等。
激光传感器工作时,激光发射二极管首先向目标发射激光脉冲。激光被目标反射后,向各个方向散射。部分散射光返回传感器接收器,被光学系统接收,并成像到雪崩光电二极管上。雪崩光电二极管是一种具有内部放大功能的光学传感器,因此它可以检测极微弱的光信号并将其转换为相应的电信号。
最常见的是激光测距传感器,它可以通过记录和处理光脉冲从发送到返回和接收的时间来测量目标距离。由于光传播速度如此之快,激光传感器必须极其准确地测量传输时间。
例如,光速约为3x108m/s,为了达到1mm的分辨率,传输时间测距传感器的电子电路必须能够解析以下极短的时间:
0.001m/(3x108m/秒)=3ps
要区分3ps的时间,这对电子技术要求过高,而且实现成本太高。但如今的激光测距传感器巧妙地避开了这一障碍,利用简单的统计原理,即平均法则,实现了1mm的分辨率并保证了响应速度。
利用激光高方向性、高单色性、高亮度等特点,可以实现非接触式远距离测量。激光传感器常用于测量长度、距离、振动、速度、方位等物理量,还可用于探伤和空气污染物的监测。
延伸阅读:
激光传感器具有许多独特的特性,这使得它们在许多领域得到广泛应用。以下是激光传感器的一些主要特点:
1.高精度:激光传感器可以达到微米级的测量精度,因此可以非常准确地获取目标物体的位置、尺寸等信息。
2.高速测量:激光传感器具有毫秒级的响应速度,这使得它在快速移动物体的测量中非常有用,例如自动化生产线上的物体检测和测量。
3.非接触式测量:激光传感器利用光电效应原理进行测量,无需接触被测物体,因此可以避免测量过程中的干扰和损坏。这非常适合一些对测量对象非常敏感的测量场景,例如珍贵文物的保护、医药生产等领域。
4.精确距离测量:通过测量激光脉冲的往返时间,激光传感器可以精确计算出物体与传感器之间的距离。
5.测量范围广:激光传感器可以在几厘米到数百米的较远距离内进行精确测量。
6.抗干扰能力强:激光传感器能够在复杂环境下保持稳定的测量性能,具有良好的抗干扰能力。
-
光子学技术在心血管疾病诊疗领域的创新应用与发展展望
心血管疾病(CardiovascularDisease,CVD)作为全球首要致死病因,每年导致约2000万人死亡,其疾病谱涵盖冠状动脉疾病、心肌梗死、脑卒中、心律失常及心力衰竭等多种病症,对全球公共卫生体系构成严峻挑战。长期以来,计算机断层扫描(ComputedTomography,CT)、血管造影术等传统光子学技术虽为CVD的诊断与治疗提供了重要支撑,但受限于侵入性较强、功能信息获取有限、实时监测能力不足等固有短板,难以满足临床对精准化、无创化诊疗的需求。近年来,以光声成像、光学可穿戴传感、光动力疗法为代表的新兴光子学技术快速发展,通过融合光学原理与医学诊疗需求,在提升CVD诊断精度、优化治疗方案、拓展监测场景等方面展现出显著优势,正逐步推动心血管医学向更高效、更精准、更可及的方向变革。
2025-08-27
-
光纤激光器的核心原理与主流腔型技术分析
在现代激光技术体系中,光纤激光器凭借高功率输出、优异光束质量及稳定运行特性,已在工业制造、光纤通信、医疗诊断等关键领域实现广泛应用。其技术优势的形成,源于以稀土掺杂光纤为核心的增益介质设计及多元化谐振腔结构的创新。本文基于光纤激光器的工作机制,系统阐述其核心原理,并对四类主流谐振腔的技术特征与应用场景展开深入分析。
2025-08-26
-
工业机器视觉光源选型与打光技术全解析:从原理到实战应用
在工业机器视觉系统的构建与运行过程中,光源选型及打光技术是决定后续图像处理工作成效的核心环节。科学合理的照明方案能够显著降低算法开发与应用的难度,有效提升检测精度与系统运行稳定性;反之,若光源选择不当或打光方式不合理,极易引发缺陷漏检、尺寸测量偏差等问题,进而影响整个生产流程的效率与产品质量管控水平。本文将从光源辅助元件、互补光原理、核心光源类型及光源控制器四个关键维度,系统剖析工业机器视觉领域中光源应用的内在逻辑,为各类实际检测场景提供专业、可落地的选型指导。
2025-08-25
-
光学领域“超级黑”材料的特性、原理及应用研究
本文聚焦光学领域中的“超级黑”材料,突破大众对光学学科多与“光明”相关的传统认知,系统阐述“超级黑”的科学定义、黑度衡量标准、核心材料特性、技术实现原理、多元应用场景及深层科学价值,为理解现代光学与材料科学的前沿探索提供参考。
2025-08-25