什么是快照式成像光谱仪?都有什么优缺点?
随着科技的迅猛进步,快照式成像光谱仪在各行业获得广泛的应用。本文将为您揭示其六大快照式成像光谱仪的优缺点以及使用场景。

首先,计算层析成像光谱仪采用计算机生成的全息图色散元件设计,无需推扫或其他运动部件即可直接获取观测场景的所有成像和光谱信息。然而,该技术面临的主要挑战在于难以实现高光谱分辨率和实时图像重建。
其次,编码孔径计算成像光谱仪利用编码孔径板替代传统色散成像光谱仪中的狭缝,通过编码板编码后的图像接收与色散成像,提高了观测效率和获取信息量,具有良好的应用前景。然而,要实现工程化应用,还需解决诸如高精度二维孔径编码板制造等关键问题。
第三,滤光片堆栈成像光谱仪采用一系列相互夹角的窄带滤光片堆栈组替代单一滤光片或多光谱相机,以提高时间分辨率。然而,该技术受限于光谱通道数量及对后端成像镜组的要求。
第四,光纤重组成像光谱仪通过光纤束实现前端物镜成像信息的接收与后端整形图像输出,实现了信息的一维排列与色散成像。
第五,微透镜阵列场积分成像光谱仪利用微透镜阵列对前置物镜所成的中继像进行细分,并通过中间孔径后由后端色散成像光谱系统接收并成像。该技术在天文领域率先应用,可实现二维目标的三维立方体数据采集。
最后,映射式成像光谱仪通过映射镜将图像切分为不同条状场景,并结合棱镜阵列和微透镜阵列实现色散成像,以获取一系列子图像。通过算法融合重建,可获得最终的高光谱图像立方体数据。
综上所述,这六大快照式成像光谱仪各具特点,为科研领域带来重大突破。我们期待着这些技术在未来发挥更大的作用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30