【揭秘】色散型成像光谱仪:科技界的“火眼金睛”!
亲爱的朋友们,你们知道吗?有一种神奇的仪器——色散型成像光谱仪,它就像孙悟空的火眼金睛一样,能够洞察一切!今天,我们就来聊聊这个高科技的“神器”吧!
色散型成像光谱仪,这个名字听起来是不是有点高大上?没错,它是目前最成熟、应用最广泛的成像光谱仪类型。无论是在航空、航天、地面、工业还是实验室研究中,它都是高精度定量探测的主要手段,发挥着举足轻重的作用。
那么,色散型成像光谱仪是如何工作的呢?简单来说,它的核心光学元件就是色散器件,比如棱镜、光栅等,这些元件可以将入射的复合白光衍射为不同的单色光。色散型成像光谱仪的基本组成包括狭缝、准直仪、色散分光器件、聚焦镜和探测器。
接下来,我们来详细了解一下两种常见的色散型成像光谱仪:
首先是棱镜型成像光谱仪。它使用棱镜作为核心分光器件,分光原理是组成棱镜的透射材料对不同波长具有不同的折射率。棱镜型成像光谱仪的优点是可以在宽光谱下进行工作,工作带宽可以达到几百纳米甚至几个微米。但是,它的缺点也很明显,那就是色散率低,导致仪器的光谱分辨率难以做到很高,且光谱分辨率在整个工作波段上并不均一分布,而是随着工作波长的增大而增大。
然后是光栅型成像光谱仪。常见的光栅型成像光谱仪有使用平面反射式光栅的 Czerny-Turner 成像光谱仪,使用凸面和凹面光栅的同心类成像光谱仪(主要为Offner 和 Dyson 成像光谱仪),以及使用棱镜和透射光栅共同组成核心分光器件的 PG 或 PGP型成像光谱仪。光栅的色散率很高,因此光栅型成像光谱仪可以达到很高的光谱分辨率。但是,由于光栅存在多级衍射效应,因此光栅型成像光谱仪的工作光谱不能过宽(级次滤光片可以一定程度上解决这一问题),另外精密光栅的制作极为复杂,光谱仪的装调也比棱镜型成像光谱仪的装调更为复杂。
总之,色散型成像光谱仪是一种非常神奇的高科技产品,它在我们的生活中发挥着越来越重要的作用。希望这篇文章能让大家对这个“神器”有更深入的了解!
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30