什么是手性光学?
1.手性光学主要研究微纳光学结构(如波导、微腔等)中的手性光场与手性光学材料或手性物质之间的不对称相互作用。其目标是探索光子传输特性和光量子态的不可逆控制,实现片上集成光量子信息处理和特种光子器件。
2.手性是指物体不能与其镜像重合的特性。例如,我们的左手和右手是彼此的镜像,但不能完全重合。在化学和医学领域,手性分子是与其镜像不重合的分子,这种手性通常是由分子中的不对称碳原子引起的。手性在自然界中广泛存在,在多种学科中代表了重要的对称特征。
3.手性光学的一个关键特征是手性介质对右旋或左旋圆偏振(RCP和LCP)光的不同响应,这被称为光的“手性态”。手性介质对于这两种偏振态表现出不同的复折射率,导致RCP和LCP光的吸收不同,这称为圆二色性(CD)。同时,线偏振光场在穿过手性介质时会相对于原来的方向发生旋转,这种效应称为光学旋转色散(ORD)。
4.CD和ORD光谱广泛应用于生物学、医学、化学和物理领域,它们可用于研究不同类型和尺寸的手性分子,特别是用于分析大分子的二级结构和构象。尽管大多数生物分子或其他天然手性介质的手性光学响应通常很弱,但手性光学的研究对于理解生命现象和探索新的光子器件仍然具有重要意义。
延伸阅读:
1.手性光学的研究现状非常活跃,涉及领域广泛,包括但不限于化学、物理、材料科学和生物医学。目前的研究主要集中在手性光场的控制、手性光学材料的设计与应用以及手性分子与光的相互作用等方面。
2.在手性光场控制方面,研究人员通过设计超表面、光子晶体等微纳光学结构,实现了手性光场的灵活控制。这些结构可以产生具有特定手性的光场,用于实现光子的非互易传输、光量子态的操控等。例如,有报道称,通过混合偏振光束的设计,可以实现光子的不可逆传输、光量子态的操控等,可以控制局部光学手性密度,从而提高对映体识别和分离的效率。
3.在手性光学材料方面,研究人员致力于设计和合成具有优异手性光学性能的材料。这些材料不仅具有高的圆二色性和光学色散,而且具有高光学品质因数和稳定性。此外,一些新型手性超材料和手性纳米结构也表现出独特的手性光学响应,为手性光学应用提供了更多可能性。
4.在手性分子与光的相互作用方面,研究人员深入探讨了手性分子的光吸收、散射和偏振旋转特性。这些研究不仅有助于理解手性分子的光学活性与其立体构型的关系,而且为手性分子的检测和识别提供了新的方法。此外,手性光学在生物医学领域的应用也受到越来越多的关注,例如用于药物筛选、疾病诊断和生物传感。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15