激光束参数的测量方法
激光测量中常用的包括:能量、功率、光能量密度、辐照度等。

1、能量与光子数成正比,计量单位为焦耳(J);
2、功率是能量发射的速率,计量单位是瓦特(W)1W=1 J/S;
3、辐照度=单位面积的功率,单位为W/cm2;
4、光能密度=单位面积的能量,单位为J/cm2.
延伸阅读:
激光束参数是描述激光光束特性的关键指标,涵盖了多个维度的技术细节。以下是一些主要激光束参数及其简要说明:
1、波长:激光束的波长决定其颜色和光子能量,直接影响激光与物质相互作用的方式,例如在切割、焊接或传感应用中的穿透深度、吸收特性等。
2、功率(输出功率):激光器产生的总光能流量,通常以瓦(W)为单位测量,它关系到激光加工的速度和效果,在材料加工、医疗等领域至关重要。重要的。
3、光束质量因子(M²值):用于评估实际激光束相对于理想高斯光束的聚焦性能。 M²越接近1.说明光束越接近衍射极限,聚焦后形成的光斑越小、越均匀。
4、束腰直径(w0或半径rw0):在激光束的能量分布中,强度下降到峰值的1/e²(约等于37%)时的横向尺寸,该参数对于确定激光束聚焦能力和计算瑞利长度起着重要作用。
5、发散角:激光束在自由空间传播时,光束截面直径随着距离增加而扩大的角度,影响聚焦后的焦深和工作距离。
6、瑞利长度(zR):在此长度范围内,激光束的扩散最小,光斑尺寸的变化相对较小。
7、光束参数积(BPP):束腰半径乘以远场发散角,表征激光束的聚焦能力和传输效率,BPP值越小,激光束越容易实现高质量聚焦。
偏振态:激光可以是线偏振、圆偏振或椭圆偏振,这对于光学系统的设计和光通信、测量、材料加工等具体应用具有重要意义。
8、光束模式:高斯模式或非高斯模式(如TEM00和TEM01)决定了光束截面上的能量分布形状。
通过精确控制和测量这些参数,可以优化激光系统在不同应用场景下的性能,确保满足精密制造、医疗诊疗、科研实验、通信技术等不同行业的需求。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
