紫外激光器的特性有哪些
1.激光光束通常为机械印刷电路板加工(例如铣削或自动电路板切割)提供低压替代方法。但紫外激光器具有限制热应力的优点,这是其他激光器所不具备的。这是因为大多数紫外激光系统都以低功率运行。
2.通过使用有时称为“冷烧蚀”的工艺,紫外激光束可减少热影响区,从而最大限度地减少边缘加工、碳化和其他热应力的影响,同时使用更精确的高功率激光通常会产生这些负面影响。

3.紫外线激光的波长比可见光短,因此肉眼看不见。虽然您看不到这些激光束,但这些短波长使紫外激光能够更精确地聚焦,产生极其精细的电路特性,同时保持出色的定位精度。
4.除了波长短和工件温度低之外,紫外光中存在的高能光子使紫外激光器能够应用于大型PCB电路板组合,从FR4等标准材料到高频陶瓷复合材料和聚酰亚胺各种材料例如柔性PCB材料都适用。
5.紫外激光器在应用于树脂和铜时表现出极高的吸收率,在加工玻璃时也具有适当的吸收率。在加工这些初级材料时,只有昂贵的准分子激光器(波长248nm)才能实现更好的整体吸收。
6.这种材料的差异使得紫外激光器成为许多工业领域各种PCB材料应用的最佳选择,从最基本的电路板和电路布线的生产到袖珍嵌入式芯片等先进工艺的生产都是常见的。
7.紫外激光系统直接根据计算机辅助设计数据处理电路板,这意味着电路板生产过程中不需要任何中间人。加上紫外光的精确聚焦能力,紫外激光系统可以实现高度定制的解决方案和可重复定位。
延伸阅读:
紫外激光器是一种特殊类型的激光,其主要特点是输出激光波长在紫外光谱范围内,通常在400纳米或0.4微米以下。由于其波长短的特点,该激光器具有以下优点和应用:
1.高精度加工:紫外激光束具有极高的聚焦能力,可以聚焦到亚微米甚至更小的尺寸,因此在微加工领域表现出色,适用于半导体、电子元件、生物芯片和精密光学元件的精细结构的切割、打标和钻孔。
2.热效应低:由于紫外光子能量高,与材料相互作用时产生的热量相对较少。特别适合加工热敏性材料,避免高温造成材料变形或损坏。
3.材料适用性广:对于一些金属、聚合物、玻璃、陶瓷等透明或半透明材料,紫外激光可以实现“冷”加工,即非热熔化或蒸发去除材料,从而实现高质量的表面处理。
4.消毒灭菌:在生物技术和医疗设备中,紫外线激光器可用于灭菌消毒,因为紫外线具有破坏微生物DNA和RNA的能力,从而杀死细菌和病毒。
5.科学研究:在物理、化学、生物等许多科学领域,紫外激光器被用于实验研究,如荧光激发、光谱分析、高分辨率成像等。
6.工业制造:紫外激光器广泛应用于PCB线路板精细切割、薄膜太阳能电池划片、触摸屏和OLED面板生产等领域。
总之,紫外激光器以其独特的物理特性和技术优势,在现代精密制造、科学研究和医疗行业中发挥着重要作用。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
