激光测距仪工作原理
1.激光测距仪一般采用两种方法测量距离:脉冲法和相位法。
2.脉冲法测距的过程如下:测距仪发射的激光经被测物体反射后被测距仪接收,测距仪同时记录激光的往返时间。光速与往返时间乘积的一半就是测距仪与被测物体之间的距离。
3.脉冲法测距的精度一般在+1/-1米左右。另外,此类测距仪的测量盲区一般在15米左右。

延伸阅读:
激光测距仪是一种非常先进的测量工具,具有以下特点和优势:
1.精度高:由于激光的特性,可以提供非常精确的距离测量。大多数商业和工业级激光测距仪的精度范围为±1毫米至±5毫米,具体取决于型号和制造商。
2.快速测量:与卷尺或光学测距仪等传统测量方法相比,激光测距仪可以更快地获取距离数据,节省大量时间。
3.远距离测量:一些先进的激光测距仪可以测量几公里外的目标,这对于大规模建筑、地形测量或军事应用非常有用。
4.易于操作:激光测距仪通常被设计为用户友好型,只需按一下按钮即可执行测量,无需进行复杂的计算。
5.抗干扰性强:由于激光束具有良好的方向性,对外界环境光的影响不敏感,即使在明亮的阳光下也能获得准确的结果。
6.多功能性:一些高端激光测距仪还集成了其他功能,例如面积和体积测量、角度测量等。
7.便携性:许多激光测距仪体积小、重量轻,易于携带到现场使用。
8.应用广泛:激光测距仪广泛应用于建筑、测量、采矿、林业、高尔夫球场、狩猎、户外运动等领域。
值得注意的是,虽然激光测距仪有很多优点,但它们并非没有局限性。例如,它们可能无法在雾、雨、雪等恶劣天气条件下工作,因为这些条件会影响激光束的传播。另外,如果目标表面的反射性能较差,也可能会影响测量结果。此外,对于测量近距离或微小物体,激光测距仪可能不如其他类型的测距设备有效。
总体而言,激光测距仪是一种高效、准确且易于使用的测量工具,对于需要频繁或远程测量的应用来说是一个不错的选择。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
