激光测距仪工作原理
1.激光测距仪一般采用两种方法测量距离:脉冲法和相位法。
2.脉冲法测距的过程如下:测距仪发射的激光经被测物体反射后被测距仪接收,测距仪同时记录激光的往返时间。光速与往返时间乘积的一半就是测距仪与被测物体之间的距离。
3.脉冲法测距的精度一般在+1/-1米左右。另外,此类测距仪的测量盲区一般在15米左右。

延伸阅读:
激光测距仪是一种非常先进的测量工具,具有以下特点和优势:
1.精度高:由于激光的特性,可以提供非常精确的距离测量。大多数商业和工业级激光测距仪的精度范围为±1毫米至±5毫米,具体取决于型号和制造商。
2.快速测量:与卷尺或光学测距仪等传统测量方法相比,激光测距仪可以更快地获取距离数据,节省大量时间。
3.远距离测量:一些先进的激光测距仪可以测量几公里外的目标,这对于大规模建筑、地形测量或军事应用非常有用。
4.易于操作:激光测距仪通常被设计为用户友好型,只需按一下按钮即可执行测量,无需进行复杂的计算。
5.抗干扰性强:由于激光束具有良好的方向性,对外界环境光的影响不敏感,即使在明亮的阳光下也能获得准确的结果。
6.多功能性:一些高端激光测距仪还集成了其他功能,例如面积和体积测量、角度测量等。
7.便携性:许多激光测距仪体积小、重量轻,易于携带到现场使用。
8.应用广泛:激光测距仪广泛应用于建筑、测量、采矿、林业、高尔夫球场、狩猎、户外运动等领域。
值得注意的是,虽然激光测距仪有很多优点,但它们并非没有局限性。例如,它们可能无法在雾、雨、雪等恶劣天气条件下工作,因为这些条件会影响激光束的传播。另外,如果目标表面的反射性能较差,也可能会影响测量结果。此外,对于测量近距离或微小物体,激光测距仪可能不如其他类型的测距设备有效。
总体而言,激光测距仪是一种高效、准确且易于使用的测量工具,对于需要频繁或远程测量的应用来说是一个不错的选择。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
