计算光学成像的技术优势
1.计算光学成像,顾名思义,是一种将“计算”融入光学成像过程中任意一个或多个环节的新型成像技术或系统。光学图像的形成与三个因素密切相关:场景/物体的照明模式、系统的光学传递函数以及图像传感器的采样。
2.通过光学和算法的联合优化设计,计算光学成像技术的优势是全方位的(见下图)。根据具体的成像任务,计算光学成像技术可以扩展成像元件,对光场的相位/传播方向、相空间、偏振态、光谱、时间等参数进行成像;还可以提高成像性能,实现分辨率、视野、视场、景深、动态范围等方面的提升;成像系统也可以通过去掉透镜来简化;即使在传统光学成像技术难以应对的弱光、强散射、有障碍物等环境下也能获得优异的性能。

延伸阅读:
光学成像是通过光学系统捕获和呈现物体图像的过程,不同的光学成像技术适合不同的应用,以下是一些常见的光学成像技术:
1.透镜成像:透镜是最基本的光学元件之一,广泛应用于相机、望远镜、显微镜等设备中。通过透镜,远处或微小的物体可以成像到像平面上。
2.反射式光学成像:使用反射镜代替透镜来创建图像。望远镜和反射式望远镜(如牛顿式望远镜)是常见的反射式光学系统。
3.干涉成像:干涉是一种利用波的相位差形成图像的技术。例如,可以使用Michelson干涉仪和Fabry-Perot干涉仪来形成干涉图像。
4.衍射成像:衍射是波穿过物体边缘或孔径时产生的波前弯曲现象。衍射成像技术通常用于显微镜和衍射光栅。
5.全息成像:利用全息术记录光波的振幅和相位信息,从而在观察时呈现三维效果。全息成像可用于三维显示和模拟。
6.红外和紫外成像:通过使用红外或紫外光学器件和探测器,可以捕获红外或紫外光谱范围内物体的图像。这在军事、医学和科学研究中都有应用。
7.光学相干层析成像(OCT):主要应用于医学领域,OCT利用光学干涉技术实现生物组织的高分辨率三维成像。
8.X射线成像:通过使用X射线,可以穿透物体并形成图像。 X射线成像广泛应用于医学(X射线摄影、CT扫描)和工业(质量检验、材料分析)。
这些技术在不同领域和应用中都有各自的优势和适用性。选择合适的技术取决于成像要求,例如分辨率、波长范围、深度、灵敏度等。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
