计算光学成像的技术优势

  1.计算光学成像,顾名思义,是一种将“计算”融入光学成像过程中任意一个或多个环节的新型成像技术或系统。光学图像的形成与三个因素密切相关:场景/物体的照明模式、系统的光学传递函数以及图像传感器的采样。


  2.通过光学和算法的联合优化设计,计算光学成像技术的优势是全方位的(见下图)。根据具体的成像任务,计算光学成像技术可以扩展成像元件,对光场的相位/传播方向、相空间、偏振态、光谱、时间等参数进行成像;还可以提高成像性能,实现分辨率、视野、视场、景深、动态范围等方面的提升;成像系统也可以通过去掉透镜来简化;即使在传统光学成像技术难以应对的弱光、强散射、有障碍物等环境下也能获得优异的性能。

 


  延伸阅读:


  光学成像是通过光学系统捕获和呈现物体图像的过程,不同的光学成像技术适合不同的应用,以下是一些常见的光学成像技术:


  1.透镜成像:透镜是最基本的光学元件之一,广泛应用于相机、望远镜、显微镜等设备中。通过透镜,远处或微小的物体可以成像到像平面上。


  2.反射式光学成像:使用反射镜代替透镜来创建图像。望远镜和反射式望远镜(如牛顿式望远镜)是常见的反射式光学系统。


  3.干涉成像:干涉是一种利用波的相位差形成图像的技术。例如,可以使用Michelson干涉仪和Fabry-Perot干涉仪来形成干涉图像。


  4.衍射成像:衍射是波穿过物体边缘或孔径时产生的波前弯曲现象。衍射成像技术通常用于显微镜和衍射光栅。


  5.全息成像:利用全息术记录光波的振幅和相位信息,从而在观察时呈现三维效果。全息成像可用于三维显示和模拟。


  6.红外和紫外成像:通过使用红外或紫外光学器件和探测器,可以捕获红外或紫外光谱范围内物体的图像。这在军事、医学和科学研究中都有应用。


  7.光学相干层析成像(OCT):主要应用于医学领域,OCT利用光学干涉技术实现生物组织的高分辨率三维成像。


  8.X射线成像:通过使用X射线,可以穿透物体并形成图像。 X射线成像广泛应用于医学(X射线摄影、CT扫描)和工业(质量检验、材料分析)。


  这些技术在不同领域和应用中都有各自的优势和适用性。选择合适的技术取决于成像要求,例如分辨率、波长范围、深度、灵敏度等。

创建时间:2023-12-22 10:47
浏览量:0

▍最新资讯