OLED与PLED的区别
目前有机电致发光技术在全球范围内不断发展,根据材料的不同大致可分为两种技术。一是开发高分子材料作为发光层的技术,简称PLED。另一种是开发小分子作为发光层材料,简称OLED。OLED和PLED有什么区别?以下比较是基于材料、工艺、设备、部件特性、专利授权等方面进行的,因为两种技术有其自身的差异。

1.材料方面:OLED和PLED材料的共同特点是都含有共轭化学结构,荧光效率高,但两者的分子量差异相当大。小分子物质的分子量是平均的。大约是数百,而对于聚合物来说则在数万到数百万之间。在材料获取方面,小分子材料的合成和纯化比高分子材料更简单,更容易达到批量生产和材料纯度的要求。相对而言,小分子的材料性能比大分子的材料性能更容易掌握,但聚合物的热稳定性和机械性能更好。
2.设备方面:由于材料特性的差异会导致元件制造设备的差异,小分子采用热蒸发的方式蒸发多层有机薄膜材料。为了避免不同材料之间的相互污染,因此需要使用多腔真空设备,因此设备的成本相对较高。大多数PLED是通过溶液旋涂进行涂覆的,这与CD-R的制造工艺类似,设备成本低,PLED可采用滚涂或丝网涂布方式,更有利于大尺寸显示器的发展。
3.制造工艺方面:虽然PLED采用旋涂,可以更快速地成膜,但涂覆后仍需要烘烤以去除溶剂。因此,其成膜时间并不比OLED短,这会影响量产进程。屈服。目前,多家主要OLED厂商均已生产出全彩显示样机,但PLED仍受限于红、绿、蓝三个像素独立定位困难的瓶颈。到目前为止,全彩PLED显示器还无法推出。目前,采用喷墨定位将是较为可行的解决方案。
4.组件特性方面:到目前为止,两款组件的发光效率均能高于15lm/W,PLED甚至可以超过20lm/W,且PLED可以耐受更高的电流密度和更高的温度环境下操作。
5.专利授权方面:CDT目前希望能够加速PLED的商业化,对于PLED技术转让和专利授权的态度也变得更加积极,比Kodak开放得多。
延伸阅读:
OLED(Organic Light-Emitting Diode,有机发光二极管)和PLED(Polymer Light-Emitting Diode,聚合物发光二极管)都是发光二极管技术,但它们在材料和结构上有一些不同之处。
1.OLED(有机发光二极管):
OLED使用有机化合物作为发光材料,这些有机分子在电流的作用下发光。
OLED的结构通常包括有机发光层、负极和正极。当电流通过有机层时,有机分子发光,形成图像。
OLED显示器是自发光的,因此不需要背光,这有助于提高能源效率和薄型化。
OLED可以实现更高的对比度和更丰富的色彩,因为每个像素独立发光。
2.PLED(聚合物发光二极管):
PLED是OLED的一种变体,它使用聚合物材料代替小分子有机材料。
聚合物是高分子材料的一种,与小分子有机材料相比,它更容易加工,可以通过印刷等方式应用于大面积基材。
PLED的材料和制备方法使其更适合柔性显示器的制造。
尽管PLED在某些方面具有潜在优势,但OLED在市场上仍然更为常见。
总体而言,OLED和PLED都代表了先进的显示技术,在高画质、自发光、轻薄化、柔性显示等方面具有巨大潜力。在实际应用中,OLED广泛应用于电视、手机等显示设备,而PLED仍处于研发阶段。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
