OLED与PLED的区别
目前有机电致发光技术在全球范围内不断发展,根据材料的不同大致可分为两种技术。一是开发高分子材料作为发光层的技术,简称PLED。另一种是开发小分子作为发光层材料,简称OLED。OLED和PLED有什么区别?以下比较是基于材料、工艺、设备、部件特性、专利授权等方面进行的,因为两种技术有其自身的差异。

1.材料方面:OLED和PLED材料的共同特点是都含有共轭化学结构,荧光效率高,但两者的分子量差异相当大。小分子物质的分子量是平均的。大约是数百,而对于聚合物来说则在数万到数百万之间。在材料获取方面,小分子材料的合成和纯化比高分子材料更简单,更容易达到批量生产和材料纯度的要求。相对而言,小分子的材料性能比大分子的材料性能更容易掌握,但聚合物的热稳定性和机械性能更好。
2.设备方面:由于材料特性的差异会导致元件制造设备的差异,小分子采用热蒸发的方式蒸发多层有机薄膜材料。为了避免不同材料之间的相互污染,因此需要使用多腔真空设备,因此设备的成本相对较高。大多数PLED是通过溶液旋涂进行涂覆的,这与CD-R的制造工艺类似,设备成本低,PLED可采用滚涂或丝网涂布方式,更有利于大尺寸显示器的发展。
3.制造工艺方面:虽然PLED采用旋涂,可以更快速地成膜,但涂覆后仍需要烘烤以去除溶剂。因此,其成膜时间并不比OLED短,这会影响量产进程。屈服。目前,多家主要OLED厂商均已生产出全彩显示样机,但PLED仍受限于红、绿、蓝三个像素独立定位困难的瓶颈。到目前为止,全彩PLED显示器还无法推出。目前,采用喷墨定位将是较为可行的解决方案。
4.组件特性方面:到目前为止,两款组件的发光效率均能高于15lm/W,PLED甚至可以超过20lm/W,且PLED可以耐受更高的电流密度和更高的温度环境下操作。
5.专利授权方面:CDT目前希望能够加速PLED的商业化,对于PLED技术转让和专利授权的态度也变得更加积极,比Kodak开放得多。
延伸阅读:
OLED(Organic Light-Emitting Diode,有机发光二极管)和PLED(Polymer Light-Emitting Diode,聚合物发光二极管)都是发光二极管技术,但它们在材料和结构上有一些不同之处。
1.OLED(有机发光二极管):
OLED使用有机化合物作为发光材料,这些有机分子在电流的作用下发光。
OLED的结构通常包括有机发光层、负极和正极。当电流通过有机层时,有机分子发光,形成图像。
OLED显示器是自发光的,因此不需要背光,这有助于提高能源效率和薄型化。
OLED可以实现更高的对比度和更丰富的色彩,因为每个像素独立发光。
2.PLED(聚合物发光二极管):
PLED是OLED的一种变体,它使用聚合物材料代替小分子有机材料。
聚合物是高分子材料的一种,与小分子有机材料相比,它更容易加工,可以通过印刷等方式应用于大面积基材。
PLED的材料和制备方法使其更适合柔性显示器的制造。
尽管PLED在某些方面具有潜在优势,但OLED在市场上仍然更为常见。
总体而言,OLED和PLED都代表了先进的显示技术,在高画质、自发光、轻薄化、柔性显示等方面具有巨大潜力。在实际应用中,OLED广泛应用于电视、手机等显示设备,而PLED仍处于研发阶段。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
