光学编码器的基本原理是什么?
1.光学编码器按形状分为圆形和直线(光学尺)两种。按检测方法分为平行狭缝法、莫尔条纹法和纵向条纹法。光学性质分为反射型和穿透型两种。
2.目前,大多数光学编码器采用平行狭缝方式。其原理是使用带有主光栅和副光栅(索引光栅)的主尺、光源和光检测模块。码盘和辅助光栅相对旋转,通过的光强发生变化,形成周期三角波信号。由于衍射关系,实际输出波形近似的正弦波,输出信号周期与主光栅的光栅节距相同,因此通过计数器可统计码盘与辅助光栅的相对旋转角度。为了满足定位系统的需要,旋转编码器必须有六个信号输出A、A1、B、B1、Z1和Z2,传统设计需要六对光源和光探测器模块,光源部分的目的是发出近似平行的红外光后,穿过光栅,到达光检测器。副光栅的作用是与主光栅重叠产生位移信号,副级光栅分为A、A1、B、B1、Z1和Z2,Z的设计是在每转一圈产生一个宽度在光栅节距内的脉冲信号作为参考,也称为零位光栅。最后,光检测模块将光强度信号转换为电流信号。

延伸阅读:
1.光学编码器是一种利用光作为介质来测量角度、长度或角速度等物理参数的传感器,它通常由光源、遮罩、感光元件和电路组成,利用光线经过掩模版后在感光元件上形成的阴影来获取被测物体的信息。
2.具体来说,当物体移动时,掩模会改变光源发出的光束的路径,并在感光元件上产生不同的阴影图案。根据这些阴影图案的变化,可以计算出物体的速度、加速度等相关参数。
3.光学编码器具有许多优点,包括高精度、高可靠性和耐环境影响。由于不涉及接触式测量,因此可以避免由于磨损或其他原因导致的数据失真问题。同时,由于它使用非电离辐射(即光),因此不会受到电磁干扰。
4.光学编码器的类型很多,根据应用场景的不同,可分为旋转式和线性式两种基本形式。旋转编码器主要用于检测旋转物体的角度和角速度,而线性编码器主要用于检测直线运动的距离和速度。
总的来说,光学编码器是一种非常重要且用途广泛的设备,在现代制造、航空航天、机器人、医疗设备等各个领域都有广泛的应用。通过使用光学编码器,我们可以更精确地测量和控制物体的位置和运动,这对于提高产品质量和效率具有重要意义。
-
突破传统技术瓶颈超短耗散拉曼孤子实现创新性突破——光纤谐振腔技术迎来革命性革新
超短光脉冲与宽带频率梳作为电信通信、人工智能、天文观测等领域的核心技术支撑,其性能水平直接影响相关领域的应用精度与运行效率。长期以来,传统技术体系始终面临显著技术瓶颈:微谐振器虽能生成短脉冲,却存在梳间距过大的固有缺陷;光纤谐振器虽可实现精细间距输出,却难以突破百飞秒级脉冲持续时间的限制。近日,新西兰奥克兰大学与华南理工大学联合研究团队在《NaturePhotonics》发表的最新研究成果,通过相位相干光脉冲驱动克尔谐振腔的创新方案,成功实现持续时间远低于100飞秒的超短耗散拉曼孤子,为解决这一长期存在的技术难题提供了创新性解决方案。
2025-11-18
-
什么是光线传输矩阵?为何说它是激光工程领域的标准化分析核心工具?
在激光器设计、谐振腔优化及光束质量调控等关键技术场景中,光线传输规律的精准把控直接决定系统整体性能。传统光学计算依赖复杂公式推导,效率低下且易出错,而光线传输矩阵通过将复杂光学变换转化为标准化矩阵运算,为光线轨迹量化分析提供了高效解决方案,成为激光技术研发过程中不可或缺的核心支撑工具。
2025-11-18
-
高斯光束在激光传输中的标准形态与核心应用原理
激光测距的精准聚焦、光纤通信的远距离稳定传输、激光医疗的精准靶向作用——这些现代激光技术的实现,均以高斯光束为核心支撑。作为激光传输的“标准形态”,高斯光束之所以能成为光学工程领域的核心模型,其背后蕴含着严密的理论推导与显著的应用优势,下文将从理论基础、核心参数、技术优势及应用场景展开系统阐述。
2025-11-18
-
光学设计关键技术,基于材料替换的公差灵敏度优化研究
光学系统设计的核心目标是实现“高性能与可制造性的统一”。在实际工程应用中,部分方案虽表面满足光学性能指标,且结构设计相近,但因公差灵敏度过高,易导致加工成本激增、交付周期延长,甚至无法满足量产需求。材料选择作为光学设计的核心环节,不仅影响光学性能调控,更是优化公差特性的关键变量,相关实践研究具有重要工程价值。
2025-11-18
