光学编码器的基本原理是什么?
1.光学编码器按形状分为圆形和直线(光学尺)两种。按检测方法分为平行狭缝法、莫尔条纹法和纵向条纹法。光学性质分为反射型和穿透型两种。
2.目前,大多数光学编码器采用平行狭缝方式。其原理是使用带有主光栅和副光栅(索引光栅)的主尺、光源和光检测模块。码盘和辅助光栅相对旋转,通过的光强发生变化,形成周期三角波信号。由于衍射关系,实际输出波形近似的正弦波,输出信号周期与主光栅的光栅节距相同,因此通过计数器可统计码盘与辅助光栅的相对旋转角度。为了满足定位系统的需要,旋转编码器必须有六个信号输出A、A1、B、B1、Z1和Z2,传统设计需要六对光源和光探测器模块,光源部分的目的是发出近似平行的红外光后,穿过光栅,到达光检测器。副光栅的作用是与主光栅重叠产生位移信号,副级光栅分为A、A1、B、B1、Z1和Z2,Z的设计是在每转一圈产生一个宽度在光栅节距内的脉冲信号作为参考,也称为零位光栅。最后,光检测模块将光强度信号转换为电流信号。
延伸阅读:
1.光学编码器是一种利用光作为介质来测量角度、长度或角速度等物理参数的传感器,它通常由光源、遮罩、感光元件和电路组成,利用光线经过掩模版后在感光元件上形成的阴影来获取被测物体的信息。
2.具体来说,当物体移动时,掩模会改变光源发出的光束的路径,并在感光元件上产生不同的阴影图案。根据这些阴影图案的变化,可以计算出物体的速度、加速度等相关参数。
3.光学编码器具有许多优点,包括高精度、高可靠性和耐环境影响。由于不涉及接触式测量,因此可以避免由于磨损或其他原因导致的数据失真问题。同时,由于它使用非电离辐射(即光),因此不会受到电磁干扰。
4.光学编码器的类型很多,根据应用场景的不同,可分为旋转式和线性式两种基本形式。旋转编码器主要用于检测旋转物体的角度和角速度,而线性编码器主要用于检测直线运动的距离和速度。
总的来说,光学编码器是一种非常重要且用途广泛的设备,在现代制造、航空航天、机器人、医疗设备等各个领域都有广泛的应用。通过使用光学编码器,我们可以更精确地测量和控制物体的位置和运动,这对于提高产品质量和效率具有重要意义。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30