涡旋光束和光学涡旋的关系
一:涡旋光束和光学涡旋的关系
随着人们对光认识的加深,特别是激光产生之后,逐渐有了更加清晰的认识。自从19世纪艾里发现透镜聚焦面上会形成奇怪的环后,人们就开始研究这种现象。1973年,William H. Carter根据计算机模拟揭示,通过对光束极其轻微的干扰可以产生或消除奇怪的光环。后来G.P.Karman等人研究发现:任何非近轴激光束的传输都会产生奇异环或环的波前位错。
此外,光束参数的变化会导致位错反应——波前奇点的不断产生和消失。后来,A. V. Volyar等人提出:环位错和边缘位错的主要特征是横向光学涡旋的空间运动,该光学涡旋的基本单元具有相位奇点,这是第一次使用光学涡旋来解释这种现象。M.S.Soskin等人发现去除了大比例的光束奇异性后,在传输过程中可以恢复光束的部分涡旋特性。事实上,波涡旋是任何光学现象所固有的,无论是经典现象还是量子现象。随着研究的不断进步,到20世纪末,出现了大量关于光学涡旋的专题论文和文章发表。
涡旋光束和光学涡旋由于其复杂性和广阔的应用前景,近年来逐渐成为学术界的研究热点。
涡旋光束之所以得到广泛应用,特别是在光学操纵领域,是因为涡旋光束的螺旋波面可以聚焦成环形光阱,而这个环形光阱就是光学涡旋。旋转。
二:涡旋光束的理论基础及研究概况
近年来,涡旋光束引起了物理学界的浓厚兴趣。所谓涡旋光束是具有连续螺旋相位的光束。换句话说,光束的波前既不是平面也不是球面,而是像涡旋一样并且具有奇点。
涡旋光束具有圆柱对称的传播特性。该光束的涡旋中心是一个暗核,光强消失,在传播过程中中心光强保持为零。涡旋光束的相位波前呈螺旋状分布,因此波矢具有方位角项并绕涡旋中心旋转。正是由于这种旋转,光波才带有轨道角动量。 L. Allen等人指出拉盖尔原高斯光束具有f=mq的螺旋相位结构,具有每光子mh的显着轨道角动量。这个螺旋相位的中心有一个奇点,因为这里的相位是不确定的,场振幅消失,导致光波中心出现“黑芯光束”。
延伸阅读:
“涡旋光束”和“光学涡旋”都涉及光学领域的一些特殊概念。以下是这两个术语的简要解释:
1.涡旋光束:涡旋光束是一种特殊类型的激光束,其光场具有旋转相位结构。这意味着携带能量和角动量的光波呈现出类似漩涡的空间结构,就像漩涡一样。这种涡旋结构可以通过调制光波的相位来实现。涡旋光束的一个重要特性是其自旋角动量,这为它们在光通信、光操纵和量子光学等领域提供了一些独特的应用。
2.光学涡旋:光学涡旋是指光波的相位和振幅呈现类似涡旋的结构。这通常涉及光波在空间中的相位旋转。光学涡旋可以通过使用特殊的光学元件(如相位板、空间光调制器等)或使用特殊的光学技术来实现。光学涡旋还与光学中的角动量有关,这为它们在微粒操纵、光通信和图像处理方面提供了一些独特的应用。
这两个概念都属于光学领域的前沿研究方向,涉及对光波相位和振幅的高度控制,具有广泛的科技应用潜力。在实际应用中,涡旋光束和光学涡旋的研究正在推动光学领域的发展,为光通信、微观物体操控和新成像技术提供新的可能性。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15