涡旋光束和光学涡旋的关系
一:涡旋光束和光学涡旋的关系
随着人们对光认识的加深,特别是激光产生之后,逐渐有了更加清晰的认识。自从19世纪艾里发现透镜聚焦面上会形成奇怪的环后,人们就开始研究这种现象。1973年,William H. Carter根据计算机模拟揭示,通过对光束极其轻微的干扰可以产生或消除奇怪的光环。后来G.P.Karman等人研究发现:任何非近轴激光束的传输都会产生奇异环或环的波前位错。

此外,光束参数的变化会导致位错反应——波前奇点的不断产生和消失。后来,A. V. Volyar等人提出:环位错和边缘位错的主要特征是横向光学涡旋的空间运动,该光学涡旋的基本单元具有相位奇点,这是第一次使用光学涡旋来解释这种现象。M.S.Soskin等人发现去除了大比例的光束奇异性后,在传输过程中可以恢复光束的部分涡旋特性。事实上,波涡旋是任何光学现象所固有的,无论是经典现象还是量子现象。随着研究的不断进步,到20世纪末,出现了大量关于光学涡旋的专题论文和文章发表。
涡旋光束和光学涡旋由于其复杂性和广阔的应用前景,近年来逐渐成为学术界的研究热点。
涡旋光束之所以得到广泛应用,特别是在光学操纵领域,是因为涡旋光束的螺旋波面可以聚焦成环形光阱,而这个环形光阱就是光学涡旋。旋转。
二:涡旋光束的理论基础及研究概况
近年来,涡旋光束引起了物理学界的浓厚兴趣。所谓涡旋光束是具有连续螺旋相位的光束。换句话说,光束的波前既不是平面也不是球面,而是像涡旋一样并且具有奇点。
涡旋光束具有圆柱对称的传播特性。该光束的涡旋中心是一个暗核,光强消失,在传播过程中中心光强保持为零。涡旋光束的相位波前呈螺旋状分布,因此波矢具有方位角项并绕涡旋中心旋转。正是由于这种旋转,光波才带有轨道角动量。 L. Allen等人指出拉盖尔原高斯光束具有f=mq的螺旋相位结构,具有每光子mh的显着轨道角动量。这个螺旋相位的中心有一个奇点,因为这里的相位是不确定的,场振幅消失,导致光波中心出现“黑芯光束”。
延伸阅读:
“涡旋光束”和“光学涡旋”都涉及光学领域的一些特殊概念。以下是这两个术语的简要解释:
1.涡旋光束:涡旋光束是一种特殊类型的激光束,其光场具有旋转相位结构。这意味着携带能量和角动量的光波呈现出类似漩涡的空间结构,就像漩涡一样。这种涡旋结构可以通过调制光波的相位来实现。涡旋光束的一个重要特性是其自旋角动量,这为它们在光通信、光操纵和量子光学等领域提供了一些独特的应用。
2.光学涡旋:光学涡旋是指光波的相位和振幅呈现类似涡旋的结构。这通常涉及光波在空间中的相位旋转。光学涡旋可以通过使用特殊的光学元件(如相位板、空间光调制器等)或使用特殊的光学技术来实现。光学涡旋还与光学中的角动量有关,这为它们在微粒操纵、光通信和图像处理方面提供了一些独特的应用。
这两个概念都属于光学领域的前沿研究方向,涉及对光波相位和振幅的高度控制,具有广泛的科技应用潜力。在实际应用中,涡旋光束和光学涡旋的研究正在推动光学领域的发展,为光通信、微观物体操控和新成像技术提供新的可能性。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
