激光技术在手机中的应用有哪些?
手机不再是一件稀有的东西,现在它们已经成为人们日常生活中不可或缺的个人物品,包括即时通讯、拍照、使用APP、玩游戏甚至支付购物等,这都离不开智能手机。小小的手机竟然有这么多的功能,真是太神奇了!而你是否知道“激光”作为一种先进的加工技术,在手机的制造过程中起着举足轻重的作用。

1.激光打标
激光打标是利用高能量密度的激光对工件进行局部照射,使表面材料汽化或发生颜色变化的化学反应,从而留下永久性标记的一种打标。该方法具有精度高、速度快、标记清晰的特点。手机采用激光打标等永久性打标方式,可以提高防伪能力,增加附加值,使产品看起来档次更高,更有品牌感。
我们在手机上随处可见激光打标的身影,比如:Logo打标、手机按键、手机外壳、手机电池、手机配件打标等,甚至手机内部也有你看不到的激光打标。零件激光打标。
2.激光切割
激光切割可以对金属或非金属零件等小型工件进行精密切割或微孔加工。具有切割精度高、速度快、热影响小等优点。手机上常见的激光切割工艺有:蓝宝石玻璃手机屏幕激光切割、相机保护镜片激光切割、手机家居按键激光切割、FPC柔性线路板激光切割、手机耳机网激光钻孔等。
3.激光焊接
激光焊接是利用高能量密度的激光束作为热源,将材料表面熔化、凝固成一个整体。热影响区的大小、焊缝的美观、焊接效率是判断焊接工艺质量的重要指标。华工激光的精密激光焊接机主要加工零件、精密仪器等小型工件,焊接精度高,有一体式、分体式等多种焊接配套工作台可供选择。
4.LDS激光直接成型
如今,LDS激光直接成型技术已广泛应用于智能手机的制造中。其优点是,通过采用激光直接成型技术,在手机外壳上标记天线轨迹,无论是直线还是曲线,只要激光能够到达,就可以打造出3D效果,节省手机空间最大程度地调整天线轨迹。这样可以让手机变得更薄、更精致、更稳定、抗震。
以手机为代表的个人电子设备正在极大地改变和便利人们的生活。功能化、智能、灵巧、美观是手机的发展方向。随着微电子工业的技术进步和人们对手机个性化的追求,激光精细加工技术将在手机制造中发挥越来越重要的作用。同时,激光器也正在推动其他微电子制造相关产业的发展。
延伸阅读:
激光技术是一项应用广泛、前景广阔的高科技技术。它越来越多地应用于工业、医疗、通信、军事等领域。随着社会的不断发展和科学技术的不断进步,激光行业必将拥有更广阔的发展前景。本文将对市场需求、技术发展、行业趋势等进行分析,并对激光行业未来的发展进行展望。
一.市场需求
目前,激光技术已广泛应用于各个领域,市场需求旺盛。首先,激光加工领域是激光行业最重要的市场之一。激光加工可以替代传统的机械加工,具有精度高、速度快、效率高等优点。随着国家大力推动制造业和制造业生产模式转型升级,激光加工将在智能制造、自动化生产等领域得到广泛应用。其次,激光医疗、无损检测、激光显示、激光电视等领域也是激光产业未来的重要市场。其中,在激光医疗领域,激光技术可以实现非接触、无创治疗,特别是在真空紫外激光、微秒激光等领域。未来,随着人类健康意识的增强,激光医疗领域将迎来快速发展。
二.技术开发
1.激光器件技术
激光器件技术是激光产业的核心技术之一。目前,激光器件技术主要有半导体激光器、固体激光器、气体激光器等技术路线。与此同时,新的激光技术不断涌现。未来,激光器件技术将更加多元化。可以预见,激光器件将向小型化、集成化、多功能化方向发展。
2.激光制造技术
作为激光技术的核心应用领域,激光制造技术将继续向智能化、高效化、个性化、低成本方向发展。未来,我们可以预见,激光制造技术将从传统的单一切割、钻孔、焊接应用向更高附加值的表面处理、金属3D打印、玻璃深加工等多领域应用发展。
3.激光材料加工技术
随着人们对材料质量的要求不断提高,激光材料加工技术必然向着更高精度、更多种类、更高速度方向发展。未来,我们可以预见,激光材料加工技术将不仅仅局限于金属、陶瓷、塑料等材料,而将覆盖更广泛的材料类型,在材料加工领域实现更广泛的应用。
三.行业趋势
1.多元化、高端化发展
未来,激光产业将继续向多元化、高端化方向发展。激光机器人、飞秒激光器等新型激光器件和激光工艺将快速发展,并在智能制造、医疗保健等多个领域得到推广和应用。激光制造技术的推广及其应用领域的拓宽,将进一步推动激光产业的发展。
2.智能生产
智能化生产将成为未来激光行业的发展趋势。随着人工智能技术的不断进步,激光制造技术将能够实现全自动化、智能化生产,从而提高生产效率和质量,降低人工成本和错误率。
3.环境保护与可持续发展
随着全球环境问题日益严重,激光行业也将面临更加严峻的环境压力。未来,激光产业将更加注重环境保护和可持续发展,广泛应用光伏发电、电动汽车等绿色技术,推动激光产业绿色可持续发展。
四.结论
总体来看,激光产业取得了一定的成就,但未来发展潜力和空间依然巨大。未来激光产业将面临更多机遇和挑战,随着科学技术的不断发展和应用环境的变化,激光行业将不断进行技术创新、模式创新和商业模式创新,以满足市场对激光技术的持续需求,推动激光产业走向更广阔的未来。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
