现代光学的发展历程
众所周知,因为有光,人们才能看到这个多彩的世界,并在这个世界上生存。因此,我们的生活中有很多光现象及其应用。无论是建筑艺术、雕塑、绘画、舞蹈艺术等诸多领域,都离不开光的存在,也因为光的存在,才变得更加耀眼夺目。

那么,光在现代人类身上是如何发挥作用的呢?光是如何发展成为现代光学的?
1.20世纪中叶随着新技术的出现,新理论也不断发展,由于光学的广泛应用,逐渐形成了许多新的分支学科或边缘学科。几何光学最初是为设计各种光学仪器而发展起来的一门专门学科。随着科学技术的进步,物理光学日益显示出它的威力。例如,光的干涉在精密测量中仍然是不可替代的。也就是说,衍射光栅是一种重要的光谱仪器。光谱在人类认识物质微观结构(如原子结构、分子结构等)方面发挥了关键作用。人们将数学、信息论和光衍射结合起来,创建了新的学科——傅里叶光学,并将其应用于信息处理、图像质量评估、光学计算等技术中。尤其是激光的发明,可以说是光学发展史上的一个革命性的里程碑。由于激光具有强度高、单色性好、方向性强等一系列独特的性能,自问世以来,迅速在许多领域得到应用。在材料加工、精密测量、通信、测距、全息探测、医疗、农业等广泛技术领域取得了优异的成果。此外,激光器在同位素分离、存储、信息处理、受控核聚变、军事应用等方面也展现出广阔的前景。
2.光学是物理学的一个分支,是一门具有数千年历史的古老自然学科。十七世纪左右,光学初步形成一门独立的学科。以牛顿为代表的粒子理论及相应的几何光学;以惠更斯为代表的波动理论和相应的波动光学构成了光学理论的两大支柱。到了19世纪末,麦克斯韦的天才总结和拓展了当时已知的电磁知识,提出了麦克斯韦方程组,将波动光学推向了更高的阶段。然而,人们对光的进一步认识离不开量子力学和相对论的建立。一方面,19世纪及以前的光学为这两个划时代的物理理论的建立提供了基础。另一方面,这两种理论的建立加深了人类对光学相关现象的认识。从十七世纪至今,光学的发展经历了五个主要历史时期:萌芽时期、几何光学时期、波动光学时期、量子光学时期和现代光学时期。
3.现代光学时期主要始于20世纪中叶,它包括激光光学、非线性光学、光纤光学、薄膜光学和集成光学、信息光学、傅里叶变换光学、光电子学等新的光学分支。特别是激光出现后,光学开始进入新时代,成为现代物理学的重要组成部分和现代科学技术的前沿。最重要的成就之一是发现了爱因斯坦在1916年预言的原子和分子的受激辐射,并创造了许多产生受激辐射的特定技术。爱因斯坦在研究辐射时指出,在一定条件下,如果受激辐射能够不断激发其他粒子,引起连锁反应,获得雪崩放大效应,最终我们可以获得极其单色的辐射,即激光。
4.光学的另一个重要分支包括成像光学、全息术和光信息处理。这一分支可以追溯到1873年阿贝提出的显微镜成像理论,以及1906年波特完成的实验验证; 1935年,Zelnick提出相衬观察法,并在此基础上,蔡司工厂制作了相衬。显微镜,他因此获得1953年诺贝尔物理学奖; 1948年,Gabor提出了波前再现原理,即现代全息术的前身,Gabor因此获得1971年诺贝尔物理学奖。
5.20世纪50年代以来,人们开始将数学、电子技术、通信理论与光学结合起来,将光谱、空间滤波、载波、线性变换等概念及相关运算引入到光学中,更新了经典的成像光学,形成了所谓的“傅立叶光学”。再加上激光器提供的相干光以及Leith和Apatenec改进的全息术,形成了一个新的学科领域——光信息处理,即信息光学。信息光学技术也称为光信息处理。它是应用信息光学理论来具体解决光信息的接收与传输、处理与确认的问题。光学信息处理的特点是可以同时处理二维图像,处理的信息量极大,处理速度也极快。照片的傅立叶变换用计算机需要几个小时甚至更长时间才能完成,但是使用光学镜头,瞬间就完成了!光纤通信就是基于这一理论的重要成果。它为信息传输和处理提供了一种新技术。
总之,现代光学与其他学科和技术的结合在人们的生产生活中发挥着越来越重要的作用和影响,为人们认识自然、改造自然、提高劳动生产率提供了强大的科技动力。
延伸阅读:
现代光学是一门研究光的性质、传播和相互作用的学科,涉及从电磁波的传播到光子的行为的多个层面。它不仅包括传统的光研究,如折射、反射、色散等,还涉及光的量子特性及其与其他学科的交叉,如量子光学、激光技术、光电子学等。以下是现代光学的一些重要方面:
1.波动光学:研究光的波动特性,包括光传播、折射、反射、干涉和衍射等现象。该领域的研究基于光的波动理论,并使用经典电磁方程来解释光学现象。
2.几何光学:重点研究光的几何特性,如光的传播路径、成像、折射、反射等,通常采用几何光学的简化模型,如光线追迹法。
3.光学材料与光学器件:研究光与不同材料的相互作用,设计、制造和应用各种光学器件,如透镜、棱镜、光栅、激光器等。
4.量子光学:研究光的量子特性,特别是将光视为由光子组成的粒子。这包括光子产生、激发态、相干性和量子纠缠等现象。
5.非线性光学:研究光与物质相互作用时产生的非线性效应,如二次谐波产生、自调制、光孤子等。
6.激光技术:研究和应用激光器的原理、设计和应用。激光技术广泛应用于医学、通信、材料加工、测量等领域。
7.光通信:研究通过光传输信息的方法,包括光纤通信、光无线电通信等。
8.光电子学:研究光与电子相互作用的学科,涉及光电二极管、光伏效应等。
现代光学在科学研究和技术应用中发挥着重要作用,为许多领域的发展提供了基础。现代光学在从基础研究到高科技应用的各个层面都产生了深远的影响。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
