米氏散射是什么?
1.米氏散射是当大气中颗粒的直径与辐射的波长相当时发生的散射。这种散射主要是由大气中的颗粒引起的,例如烟雾、灰尘、小水滴和气溶胶。散射光的强度几乎与频率无关,例如,如果观察白云对阳光的散射,每个频率的光被大致均匀地散射,因此晴朗天空中的云是白色的。为什么波浪是白色的也是同样的道理。与对称分布的瑞利散射不同,米氏散射在光的前进方向上比在后方向上更强,方向性更明显。当粒径较大时,米氏散射可以用夫琅和费衍射来近似。

2.当大气中颗粒直径等于辐射波长时发生的散射称为米氏散射。例如,云雾的粒径与红光的波长(393.96THz,0.7615um)接近,因此云雾对红光的辐射主要是米氏散射。因此,阴天和潮湿天气对米氏散射影响较大。
3.Mie提出的米氏散射理论是对于均匀介质的各向同性的单个介质球在单色平行光照射下,基于麦克斯韦方程边界条件的严格数学解。一百年来,米氏散射理论得到了很大的发展,其应用范围也逐渐扩大。例如,将颗粒形状扩展到多层各向同性介质球和梯度折射率各向同性介质球;无限长的圆柱形颗粒(折射率根据圆柱体分布)。入射光束从很宽的平行光束扩展到高斯光束和其他整形光束,称为广义米氏理论(GLMT)。广义米氏理论也可以扩展到椭球散射体。
延伸阅读:
米氏散射的条件与颗粒的尺寸、光的波长以及颗粒的光学性质(折射率)有关。以下是与米氏散射相关的一些主要条件:
1.颗粒尺寸相对于波长的比率:当颗粒尺寸与光波长相当或大于光波长时,通常会发生米氏散射。当颗粒直径接近光波长的数量级时,就会发生米氏散射。这与瑞利散射相反,瑞利散射发生在粒子远小于光波长时。
2.颗粒的光学性质:颗粒的折射率对于米氏散射的发生也很重要。不同折射率的粒子在光传播过程中会引起不同程度的散射。
3.入射光的波长:米氏散射的发生也与入射光的波长有关。波长较短的光(例如蓝光)更有可能产生显着的米氏散射效应,而波长较长的光(例如红光)可能更有可能经历瑞利散射。
一般来说,米氏散射是相对较大颗粒的散射现象,而在小颗粒的情况下,雷利散射通常更容易观察到。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
