米氏散射是什么?
1.米氏散射是当大气中颗粒的直径与辐射的波长相当时发生的散射。这种散射主要是由大气中的颗粒引起的,例如烟雾、灰尘、小水滴和气溶胶。散射光的强度几乎与频率无关,例如,如果观察白云对阳光的散射,每个频率的光被大致均匀地散射,因此晴朗天空中的云是白色的。为什么波浪是白色的也是同样的道理。与对称分布的瑞利散射不同,米氏散射在光的前进方向上比在后方向上更强,方向性更明显。当粒径较大时,米氏散射可以用夫琅和费衍射来近似。
2.当大气中颗粒直径等于辐射波长时发生的散射称为米氏散射。例如,云雾的粒径与红光的波长(393.96THz,0.7615um)接近,因此云雾对红光的辐射主要是米氏散射。因此,阴天和潮湿天气对米氏散射影响较大。
3.Mie提出的米氏散射理论是对于均匀介质的各向同性的单个介质球在单色平行光照射下,基于麦克斯韦方程边界条件的严格数学解。一百年来,米氏散射理论得到了很大的发展,其应用范围也逐渐扩大。例如,将颗粒形状扩展到多层各向同性介质球和梯度折射率各向同性介质球;无限长的圆柱形颗粒(折射率根据圆柱体分布)。入射光束从很宽的平行光束扩展到高斯光束和其他整形光束,称为广义米氏理论(GLMT)。广义米氏理论也可以扩展到椭球散射体。
延伸阅读:
米氏散射的条件与颗粒的尺寸、光的波长以及颗粒的光学性质(折射率)有关。以下是与米氏散射相关的一些主要条件:
1.颗粒尺寸相对于波长的比率:当颗粒尺寸与光波长相当或大于光波长时,通常会发生米氏散射。当颗粒直径接近光波长的数量级时,就会发生米氏散射。这与瑞利散射相反,瑞利散射发生在粒子远小于光波长时。
2.颗粒的光学性质:颗粒的折射率对于米氏散射的发生也很重要。不同折射率的粒子在光传播过程中会引起不同程度的散射。
3.入射光的波长:米氏散射的发生也与入射光的波长有关。波长较短的光(例如蓝光)更有可能产生显着的米氏散射效应,而波长较长的光(例如红光)可能更有可能经历瑞利散射。
一般来说,米氏散射是相对较大颗粒的散射现象,而在小颗粒的情况下,雷利散射通常更容易观察到。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30