光学无线通信是什么?
一.光学无线通信是什么
光学无线通信(Optical Wireless Communication,OWC)是光学通信的一种形式,其中使用非引导可见光、红外(IR)或紫外(UV)来传输信号。

在可见光波段(390–750nm) 运行的OWC系统通常称为可见光通信(VLC)。 VLC系统利用发光二极管 (LED),可以以非常高的速率发出脉冲,而不会对照明输出和人眼产生重大影响。 VLC可用于广泛的应用,包括无线LAN、无线个域网和车辆网络。另一方面,地面点对点 OWC系统,也称为自由空间光学(FSO)系统,在近红外频率(750–1600nm)下运行。这些系统通常使用激光发射器,提供经济高效、协议透明的高数据速率链路(即每波长10 Gbit/s),并为回程瓶颈提供潜在的解决方案。由于在日盲紫外光谱(200-280nm)下工作的固态光源/探测器的最新进展,人们对紫外通信(UVC)的兴趣也与日俱增。在这个所谓的深紫外波段,太阳辐射在地面上可以忽略不计,这使得可以设计带有宽视场接收器的光子计数探测器,在不增加额外背景噪声的情况下增加接收到的能量。
几十年来,人们对光无线通信的兴趣主要局限于隐蔽的军事应用和太空应用,包括卫星间和深空链路。迄今为止,OWC的大众市场渗透率有限,但IrDA是一种非常成功的无线短距离传输解决方案。
光无线通信的变体可用于各种通信应用,从集成电路中的光互连到户外建筑物间链路再到卫星通信。
二.根据传输范围,光无线通信可分为五类:
1.超短距离
堆叠且紧密封装的多芯片封装中的芯片间通信。
2.短距离
在IEEE 802.15.7标准下,无线人体局域网(WBAN)和无线个域网(WPAN)在水下通信下的应用。
3.中等范围
用于室内红外和可见光通信 (VLC)、无线局域网 (WLAN) 以及车辆对车辆和车辆对基础设施的通信。
4.远程
建筑物到建筑物的连接,也称为自由空间光通信 (FSO)。
5.超远距离
太空激光通信,特别是卫星之间的链接和卫星星座的建立。
延伸阅读:
与传统无线通信技术相比,光无线通信具有一些独特的要求和优势。
1.可见光通信和红外通信:光无线通信可以使用可见光或红外线作为传输介质。在可见光通信中,LED或激光二极管等光源用于传输数据。选择合适的光谱范围取决于具体应用的要求,例如室内定位、数据传输等。
2.高带宽和数据传输速率:光无线通信通常具有高带宽和数据传输速率。这使得它非常适合处理大量数据,例如高清视频流、虚拟现实 (VR)和增强现实(AR)应用。
3.可靠性和抗干扰性:光通信一般对电磁干扰比较敏感,因此在设计和部署系统时需要考虑抗干扰性。通过使用适当的调制和调制解调器解调技术可以提高通信的可靠性。
4.视线和定向传输:光无线通信通常需要直线视线,这意味着发射器和接收器之间不能有障碍物。这对于室内通信或某些室外场景可能是一个挑战。一些系统使用定向传输技术来克服这一限制。
5.安全性:光无线通信比其他无线通信方式更难窃听,因为光波无法轻易穿透物体。这使得它在需要高度安全性的应用中更具吸引力,例如军事通信或敏感数据传输。
6.功耗和效率:在移动设备和嵌入式系统中,功耗是一个关键考虑因素。在设计光无线通信系统时,需要优化功耗并保证系统效率。
7.光照条件:光通信的性能受光照条件的影响。例如,在室外环境中,天气、光照条件、大气湿度等因素都可能影响通信质量,需要采取相应的技术措施来应对这些挑战。
光无线通信技术的不断发展和创新,将有助于满足不同应用场景的需求,提供更加可靠、高效、安全的通信解决方案。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
