FAP(Fill Aperture)光线网格怎么使用
1.在每个优化周期中跟踪光线网格(光线束)是镜头优化过程的一部分,可用于评估误差函数和可变导数增量。平滑优化收敛依赖于射线网格对误差函数的影响。在 CODE V自动化设计中,默认设置是用具有渐晕效果的入瞳表面填充光栅,该操作更加灵活,提高了优化速度,适用于大多数成像系统。

摩尔纹
2.有些系统没有指定渐晕系数。在这种类型的系统中,光栅由孔径控制,并且不会被其他表面上的孔径拦截。在这样的系统中,应该设置CODE V的渐晕系数,使得渐晕的光瞳与光栅填充的初始孔径一致。(注意,您可以通过菜单栏“镜头 > 系统数据 > 视场/渐晕”)快速设置CODE V渐晕系数,然后单击“设置渐晕”按钮,使渐晕系数与镜头光圈相匹配。您也可以使用以下宏用于设置渐晕:“IN CV_MACRO:SETVIG”)。
3.然而,当优化器改变系统时,具有渐晕效应的光瞳可能会相对于光圈发生漂移。大多数情况下,这种漂移对收敛到解的影响不大,但是当优化后的系统的孔径更接近光学系统的后部并且更接近像平面时,可能会出现受到比较大的影响。
4.在这种情况下,您必须注意系统的渐晕系数,并确保光栅充满光圈。虽然您可以在每个周期重置CODE V的渐晕系数,但有效的替代方法是使用“填充光圈”命令 (FAP Y)。 FAP 命令更改优化器的光线网格,使其填充指定表面的孔径,而不是带有渐晕的入射光瞳直径。该指定表面的孔径通常选择光阑表面。您还可以从“误差函数”选项卡 >“优化光线网格”按钮 >“填充孔径表面”配置 FAP 设置。
5.如果您有FAP设置,则在优化过程中瞳孔大小可能会发生变化。因此,请务必检查系统的f/number并在必要时对其进行约束。
延伸阅读:
FAP(Fill Aperture Pattern)光栅的主要优点是:
1.提高图像质量:由于每个像素占据相同大小的物理空间,因此可以提供更高的分辨率,从而提高图像质量。质量和细节水平。同时,由于像素之间没有间隙,因此可以减少模糊和颜色偏差。
2.减少摩尔纹:由于像素排列紧密,可以有效减少摩尔纹的出现,使画面更加清晰、平滑。
3.增强色彩表现力:通过采用先进的驱动技术和材料,光线可以更均匀地分布在整个屏幕上,从而增强色彩表现力和饱和度。
总之,FAP光线网格可以帮助实现更好的显示效果,提高用户体验和满意度。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
