光学微腔研究现状和成果
基于回音壁模式的光学微腔(Whispering gallery mode,简称WGM)近年来已经成为研究的热点。首先,作为一个尺寸与光的波长相当的光学谐振腔,它使得凝聚态物质中的一些量子电动力学现象得以研究;其次,作为一种低阈值激光微腔,它被用于集成光学、信息光学等许多应用领域都有很好的应用前景。目前有各种形状的光学介质微腔,主要是微球腔、微盘腔、微环腔、微芯环腔几种。本文主要总结了近年来国内外光学微腔的一些研究现状和成果。

片上光学微腔示意图
一、光学微腔发展背景
1.光通信,顾名思义,就是利用光作为信息的载体来传输信号。自1960年美国科学家梅曼发明第一台红宝石激光器以来,2009年诺贝尔物理学奖得主高琅(CharlesK.Kao)和他的同事霍克曼(GA.Hckman)于1966年提出玻璃纤维可以传输光信号,并指出对通信光纤的要求是每公里的衰减小于20分贝(dB)后。通信领域已经进入了一个新时代——光纤通信技术时代。在光纤通信新兴技术的推动下,整个通信技术得到了快速发展。自DWDM系统首次商用以来,光纤通信的发展一直在加速。首先,它的容量增加了一倍。短短几十年间,光纤通信技术得到迅速普及和发展,极大地推动了人类社会信息化建设的步伐。然而,随着光纤传输容量的增大和器件尺寸的不断减小,行业很难以摩尔定律的速度发展。传统电信号处理设备面临“电子瓶颈”的限制,从而引发了全光网络的出现,掀起了全光信号处理研究的热潮。所谓全光通信网络是指信息从源节点到目的节点完全在光域内传输和交换,即全部采用光波技术来完成信息传输和交换的宽带网络信息。这样可以避免通信网络向宽带化的“电子瓶颈” ,大容量开发的首选解决方案。全光通信网络一经问世就引起了人们的极大兴趣。许多国家以关键技术、装备及零部件、材料的研发为突破口,通过现场试验推动其实用化和商业化。在此背景下,全球学术界和工业界掀起了全光信息处理关键器件的研究热潮。
随着高速以太网的普及和多媒体业务的发展,人们对现有通信系统的容量提出了更高的要求。随着波分复用(WDM)系统的快速发展,通信系统的容量得到了极大的提高。同时,WDM系统需要高性能的通道分离滤波器来直接分离或加载来自不同通道的信号。谐振滤波器是WDM系统中滤波器的最佳选择,因为它们具有尽可能窄的线宽。光谐振器可以对不同通道的信号进行分支,而不影响其他通道信号,逐渐成为企业界和研究机构广泛研究的热点。微环谐振器的尺寸非常小(微米级),集成度高,并且具有相对较大的自由谱宽度(FSR)。除了在分叉复用器和滤波器中的应用之外,光学谐振腔在调制器、光学延迟线和生物传感检测中也具有潜在的应用。因此,设计一种简单可行的光学谐振腔具有重要的实用价值。
二、国内外研究现状
事实上,早在1899年,当Fabry和Perot将平行板谐振器描述为干涉滤波器时,光学谐振器就被提出作为一种有用的器件。通过使用多个反馈回路,法布里-珀罗干涉仪能够通过调整精细因子来增加光传输的有效路径长度。与弱反射端的结构相比,强反射端的结构将具有更高的精度和更窄的通带。 20世纪90年代初期,环形谐振器开始作为全通滤波器应用于光通信中,用于色散补偿和相位均衡(仅基于相位调制原理)。 1990年,朗讯公司的Cimini等人提出利用Gires-Tournois干涉仪来实现上述功能。后来的研究发现,通过组合多个环可以实现具有增强的通带特性的高阶滤波器。后来,BELittle 等人研究了环形谐振腔分流滤波器(ChannelDropping)。与单个波导只能收集谐振波长一半功率的情况相比,增加另一个精密波导可以获得信号的全部功率。 1992年,美国贝尔实验室成功演示了第一台半导体微盘激光器。 SLMcCall等人采用湿法刻蚀方法制备微盘腔体来制备激光器。他们认为微盘腔在制备单模、低阈值激光器方面具有巨大潜力。实验表明,1.3微米和1.5微米波长的激光阈值可低于100微瓦。
延伸阅读:
光学微腔是一种光学器件,通常用于控制和增强光的相互作用,以实现一系列光学应用,包括传感、激光、单光子光源和光量子计算等。这些微腔通常是微米级和纳米级结构其中光可以被限制和传播以增强特定波长的光的效果。以下是光学微腔的基本原理:
1.反射和折射:光学微腔通常由高折射率和低折射率的材料层组成。光在两种材料之间反射和折射,导致光被限制在微腔内并传播。这些材料之间的折射率差异是形成光学微腔的基础。
2.光的反射和干涉:光在微腔中传播时,会经历多次反射和干涉,导致特定波长的光被放大或衰减。这种现象是由光的波动性和光学干涉效应决定的。
3.驻波模式:光学微腔支持不同的驻波模式,即光在微腔中的振动模式。这些驻波图案对应于不同的波长和频率,可用于选择和增强特定波长的光。
4.波导效应:光学微腔还可以包含波导,使得光可以通过波导传输并在微腔中反射和干涉。波导可用于引导光以增强特定的光学效果。
5.共振:当微腔的尺寸和折射率选择适当时,微腔会产生光的共振。共振是指特定波长的光在微腔中被强烈增强,而其他波长的光被抑制。这种效应通常用于增强传感、激光和单光子源的性能。
6.应用:光学微腔可用于多种应用,包括传感技术。微腔的共振频率对环境条件的变化非常敏感,可用于检测化学物质、生物分子等,还可用于激光、单光子源和光量子计算等领域。
简而言之,光学微腔的原理是基于光的波动特性、反射、干涉和共振效应。通过调节微腔的尺寸和折射率,可以实现对光的高度控制,从而应用于各种光学技术和器件中。这些微腔的设计和制造通常需要精密工程和纳米制造技术。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
