高通量太赫兹成像进展与挑战
太赫兹波介于红外波段和毫米波段之间,具有许多独特的性质。因此,它们被广泛应用于无损检测、安全筛查、生物医学诊断、文化遗产保护、化学等领域,在鉴定、材料表征、大气/天体物理研究等领域具有广阔的应用前景。然而,由于太赫兹波的单像素特性以及光栅扫描获取图像数据的要求,现有的太赫兹成像系统需要的成像时间从数十分钟到数十小时不等。

为了充分发挥太赫兹成像在现实世界中的应用潜力,太赫兹图像传感器阵列和先进计算成像算法的发展正在逐步解决传统系统冗长的成像过程。
1.在《光科学与应用》杂志上发表的一篇新论文中,由加州大学洛杉矶分校(UCLA)Mona Jarrahi 和 Aydogan Ozcan 教授领导的科学家团队从高通量太赫兹成像系统的最新进展中从硬件和计算成像的角度进行审查。
他们推出了各种图像传感器阵列,这些阵列已用于开发高通量频域和时域太赫兹成像系统。在频域类别中,捕获成像对象的单频或频率平均响应。频域太赫兹成像系统中使用的各种类型的传感器阵列包括基于微波辐射计、场效应晶体管、光子传感器和超导传感器的图像传感器阵列。
2.在时域类别中,捕获脉冲太赫兹照明下成像对象的超快时间响应,这不仅提供幅度和相位,还提供超快时间和光谱信息。综述了两种主要的光栅扫描太赫兹时域成像系统:一种基于光电采样和光学相机,另一种基于光电导天线阵列。比较了频域和时域太赫兹成像系统的功能和局限性,并讨论了对现有成像系统进行可能的修改以实现新的/增强的功能。
3.随着太赫兹成像硬件的快速发展,计算成像方法提供了额外的功能,减轻了太赫兹图像传感器高通量操作的一些限制。作者讨论了三种主要的计算成像方法:数字全息术、空间编码和衍射处理。数字全息术可以使用频域图像传感器进行太赫兹相位成像。
4.单像素成像系统检测到的太赫兹光束的空间编码可以通过压缩感知算法等计算方法进行图像重建。衍射处理工程师将太赫兹前端用于特定任务的光束编码,接管通常由数字后端处理的一些计算任务。衍射深度神经网络(D2NN)可以利用光与物质的相互作用来共同执行输入和输出视场之间的复杂功能,并实现各种成像任务,例如对象分类、通过扩散器成像和定量相位成像。
总而言之,希望本文能够激发太赫兹成像科学技术的进一步发展,加速太赫兹成像系统不仅在科学实验室和工业环境中,而且在我们的日常生活中更广泛的应用。
延伸阅读:
在众多太赫兹技术的研究中,太赫兹辐射源的研究占有非常重要的地位,产生太赫兹辐射的方式主要有以下三种:
1.基于电子技术的太赫兹辐射源,包括回波管、耿氏振荡器和固态倍频源等。这是毫米波技术向高频的过渡。拓展方向,这类太赫兹辐射源工作在1 THz以下,输出功率通常在几十微瓦到毫瓦量级。
2.基于光子技术的太赫兹辐射源,包括量子级联激光器、自由电子激光器和气体激光器等,是激光技术向低频的延伸。此类太赫兹辐射源输出功率较大,具有良好的应用潜力。基于太赫兹激光器的光学频率梳技术在高分辨率成像和光谱学应用中具有广阔的前景。
3.基于超快激光技术的太赫兹辐射源。此类技术是1THz附近向高频和低频方向同时发展的太赫兹辐射源技术。此类太赫兹辐射源具有脉宽窄、峰值功率高的优点,但存在能量转换效率低、平均输出功率低的问题。
因此,探索实现室温、高输出功率、连续可调、小型化的辐射源将极大推动太赫兹技术的研究,也是当前太赫兹领域的重要发展目标。
-
干涉测量术的原理、应用及技术演进研究
从宇宙天体的精细化观测到纳米级工业制造的质量管控,干涉测量术基于波的干涉效应,已发展为现代科学研究与工业生产中不可或缺的精准测量技术支撑。该技术以激光为核心载体,通过系统解析波的干涉规律,在跨学科领域实现了测量精度与应用范围的双重突破,成为推动科技进步的关键基础性工具。
2025-11-17
-
什么是柱镜光栅?微米级光学技术引领视觉领域革新
当裸眼3D影像突破平面束缚,当立体成像技术赋能产品包装升级,当光学隐身从科幻概念走向技术实践,柱镜光栅这一核心光学材料正凭借其独特的技术特性,在多个领域推动视觉体验与应用场景的深度变革。作为由微米级圆柱状凸透镜阵列构成的功能性光学材料,柱镜光栅以精准调控光线传播路径的核心能力,成为连接微观结构与宏观视觉应用的关键桥梁。
2025-11-17
-
突破性进展:阿秒涡旋脉冲串成功实现,拓展超快光-物质相互作用研究新维度
在超快光学领域,阿秒脉冲技术已成为观察原子、离子、分子等微观体系中超快电子动力学的重要手段,而轨道角动量这一关键自由度的引入,为该技术的创新发展提供了全新方向。近日,西班牙萨拉曼卡大学AlbadelasHeras教授、美国科罗拉多矿业学院DavidSchmidt教授领衔的联合研究团队,在国际权威期刊《Optica》(Vol.11,No.8)发表重磅研究成果,成功研发出阿秒涡旋脉冲串这一新型超快结构化光场。该成果通过创新性技术方案突破传统瓶颈,为化学、生物、凝聚态物理及磁学等多学科前沿研究提供了具备高时间分辨率与多维调控能力的独特工具。
2025-11-17
-
清华大学提出神经光瞳工程傅里叶叠层成像技术实现大视场高分辨率显微成像突破
在科研与医疗领域,显微镜的大视场观测与高分辨率成像需求长期存在相互制约的技术矛盾。当观测视场扩大时,边缘区域易出现图像失真、细节模糊等问题,严重影响后续分析与应用。清华大学曹良才课题组提出的神经光瞳工程傅里叶叠层成像(NePEFPM)新方法,成功破解这一技术瓶颈,为大视场高分辨率显微成像提供了创新性解决方案。相关研究成果发表于国际权威期刊《Optica》。
2025-11-17
