超表面制造新进展
智能手机上突出的后置摄像头何时会被淘汰?超表面的实现完全忽略了光的特性,有望将相机镜头的厚度减少到传统镜头的万分之一。然而,尽管取得了这些进展,但由于生产成本高和工艺复杂,挑战仍然存在。最近的研究揭示了一种可提高制造效率的水溶性“模具”。
由浦项工业大学机械工程和化学工程系的Junsuk Rho教授和Joohoon Kim教授以及高丽大学材料科学与工程系的Heon Lee教授组成的研究小组开发了一种水溶性模具。
通过其成功的应用,他们成功地创建了一个完美的高分辨率和高纵横比的超表面。这些发现已发表在《Photon X》上。
有两种主要技术用于生产超表面。
1.电子束光刻涉及使用电子束来绘制图案,但成本昂贵且制造缓慢。相比之下,纳米压印光刻使用雕刻模具来压印所需的结构,使其成为一种更经济、更快速的方法。
这种方法有其自身的挑战,特别是在与模具分离期间损坏结构的风险。结构越大,损坏的可能性就越大,这对于实现必要的高分辨率和高纵横比至关重要。
为了解决这些限制,研究团队设计了一种水溶性纳米压印模具。他们使用了一种将模具溶解在水中的技术,而不是将结构与模具物理分离,从而消除了损坏结构的风险。水溶性模具由聚乙烯醇 (PVA) 制成,这是一种易溶于水的柔性材料。
2.此外,研究团队利用水溶性模具进行实验,成功制备出1厘米大小的超透镜。超透镜具有高分辨率和 10:1 的高纵横比,使其能够转录小于 100 纳米的结构。值得注意的是,该模具在可见光范围内保持了其功能。这种新方法提供了一种经济且快速的纳米压印工艺,能够实现高分辨率和高纵横比的结果。
领导这项研究的Junsuk Rho教授解释道:“这项研究代表了通过使用水溶性模具进行纳米压印实现高分辨率和高深宽比的成就。我希望这种方法能够与大面积模具制造相结合基于深紫外光刻的技术不仅可以批量生产透镜,还可以批量生产各种超表面。这一研究进展将为经济且快速制造超表面铺平道路。”
延伸阅读:
什么是超表面技术?超表面是一种具有特殊光学性质的人造结构,可用于制备各种光学器件和系统。然而,超表面的制造成本较高,限制了其在实际应用中的推广。
1.最近,俄罗斯国立研究大学莫斯科电子技术学院的研究人员开发了一种新技术,利用激光脉冲代替光刻来制造信息显示设备的组件,有望加速下一代显示器和各种光学器件的超表面的生产系统成本。
2.传统的超表面制造方法主要采用光刻技术,即将超表面图案转移到基板上,然后通过化学刻蚀等方法去除不需要的部分,最终获得所需的超表面结构。然而,光刻技术的制造过程繁琐、费时、成本高,限制了其在大规模生产中的应用。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30