超表面制造新进展
智能手机上突出的后置摄像头何时会被淘汰?超表面的实现完全忽略了光的特性,有望将相机镜头的厚度减少到传统镜头的万分之一。然而,尽管取得了这些进展,但由于生产成本高和工艺复杂,挑战仍然存在。最近的研究揭示了一种可提高制造效率的水溶性“模具”。
由浦项工业大学机械工程和化学工程系的Junsuk Rho教授和Joohoon Kim教授以及高丽大学材料科学与工程系的Heon Lee教授组成的研究小组开发了一种水溶性模具。
通过其成功的应用,他们成功地创建了一个完美的高分辨率和高纵横比的超表面。这些发现已发表在《Photon X》上。
有两种主要技术用于生产超表面。
1.电子束光刻涉及使用电子束来绘制图案,但成本昂贵且制造缓慢。相比之下,纳米压印光刻使用雕刻模具来压印所需的结构,使其成为一种更经济、更快速的方法。
这种方法有其自身的挑战,特别是在与模具分离期间损坏结构的风险。结构越大,损坏的可能性就越大,这对于实现必要的高分辨率和高纵横比至关重要。
为了解决这些限制,研究团队设计了一种水溶性纳米压印模具。他们使用了一种将模具溶解在水中的技术,而不是将结构与模具物理分离,从而消除了损坏结构的风险。水溶性模具由聚乙烯醇 (PVA) 制成,这是一种易溶于水的柔性材料。
2.此外,研究团队利用水溶性模具进行实验,成功制备出1厘米大小的超透镜。超透镜具有高分辨率和 10:1 的高纵横比,使其能够转录小于 100 纳米的结构。值得注意的是,该模具在可见光范围内保持了其功能。这种新方法提供了一种经济且快速的纳米压印工艺,能够实现高分辨率和高纵横比的结果。
领导这项研究的Junsuk Rho教授解释道:“这项研究代表了通过使用水溶性模具进行纳米压印实现高分辨率和高深宽比的成就。我希望这种方法能够与大面积模具制造相结合基于深紫外光刻的技术不仅可以批量生产透镜,还可以批量生产各种超表面。这一研究进展将为经济且快速制造超表面铺平道路。”
延伸阅读:
什么是超表面技术?超表面是一种具有特殊光学性质的人造结构,可用于制备各种光学器件和系统。然而,超表面的制造成本较高,限制了其在实际应用中的推广。
1.最近,俄罗斯国立研究大学莫斯科电子技术学院的研究人员开发了一种新技术,利用激光脉冲代替光刻来制造信息显示设备的组件,有望加速下一代显示器和各种光学器件的超表面的生产系统成本。
2.传统的超表面制造方法主要采用光刻技术,即将超表面图案转移到基板上,然后通过化学刻蚀等方法去除不需要的部分,最终获得所需的超表面结构。然而,光刻技术的制造过程繁琐、费时、成本高,限制了其在大规模生产中的应用。
-
低密度等离子体棱镜压缩器取得突破,突破传统光学限制,赋能超高功率激光技术
激光技术的迅猛发展,持续推动着人类对极端物理现象的探索,而拍瓦级及更高功率的激光装置,更是解开高能物理、相对论光学等领域奥秘的关键工具。然而,传统激光脉冲压缩技术长期受限于光学元件的损伤阈值,成为制约激光功率提升的核心瓶颈。近日,美国密歇根大学、罗切斯特大学等机构的科研人员联合研发出基于低密度等离子体棱镜的新型脉冲压缩器,为突破这一限制带来革命性进展,相关成果发表于《HighPower Laser Scienceand Engineering》。
2025-08-18
-
从光斑到清晰成像,光学系统如何突破"模糊"极限?
当我们透过镜头观察世界时,那些清晰的图像背后,藏着光的衍射与数学模型的复杂博弈。为何遥远的恒星在望远镜中会变成光斑?光学系统如何传递图像的细节?从艾里斑到调制传递函数,这些关键概念正是解开"模糊"谜题的钥匙。
2025-08-18
-
粉末增材制造技术在掺铒石英光纤激光器中的应用研究
在光纤通信、激光加工及生物医疗等关键领域,高性能光纤激光器的需求持续攀升,而增益光纤作为其核心构成部件,其制造工艺直接决定器件的性能水平。传统制造方法虽能生产高质量增益光纤,但存在生产周期冗长、成本高昂及成分调控灵活性不足等显著局限。近期,PawelManiewski等人在《Optica》期刊发表的研究成果,提出了一种基于粉末增材制造的新型制备方案,为高性能增益光纤的研发开辟了全新路径。
2025-08-18
-
偏心仪在透镜及镜片加工中的应用解析
偏心仪在透镜及镜片加工领域中应用广泛,其核心作用在于通过精密检测与校准,确保光学元件的几何中心与光轴保持高度一致性,进而保障光学系统的成像质量与性能稳定性。具体应用如下:
2025-08-15