科学家用超算助力激光聚变研究大幅缩减了项目周期
最近,罗彻斯特大学激光能量学实验室(LLE)为支持其激光聚变试验,安装了一台新的超级计算机。
新的超级计算机使实验室的计算能力提高了4倍,并将完成某些项目所需的时间大大缩减,从30周缩短到几天,这是一个质的飞越。
罗彻斯特大学激光能量实验室(LLE)激光驱动惯性约束聚变是世界上仅有的几项研究(ICF)的设施之一,科学家们将这些设施国防安全目的,并从核聚变中获取能量。

实验室理论主任和科学家ValeriGoncharov说:“大学里的一台新的超级计算机将使研究人员能够在三维空间中模拟复杂的高能量密度现象,具有前所未有的细节。”
Goncharov解释说:“例如,如果不是不可能的话,很难直接测量内爆中微米级目标缺陷的演化。然而,详细的3D模拟可以模拟如何改变更容易检测的实验观察结果,“发现模拟结果与测试数据之间的相关性也有助于确定测试中亚尺度目标特征和其他复杂物理效应的重要性。”
机器名称“机器名称”Conesus由英特尔制造,与戴尔科技公司和劳伦斯利弗莫尔国家实验室合作,(LLNL)合作开发。它是世界上仅有的7个英特尔第四代Sapphire Rapids系统之一,也是美国仅有的两个系统之一。
“世界超级计算机500强”(TOP500 List)项目始于1993年,每年发布两次世界超级计算机最新名单。
激光聚变试验将如何受益?
罗彻斯特大学激光能量学实验室有两个非常强大的激光-Omega和OmegaOmegaEP——研究人员用于研究,包括那些涉及ICF的研究。去年,科学家们在LLNL国家点火装置(NIF)在点火方面取得突破(即产生净能量增益的聚变反应),这项工作是基于这一突破的基础之上开展的。
实验室高性能计算团队负责人William Scullin说:“每天大约有10次,我们的激光器被用来在罐子里制造一颗巨大的星星。”
但通过激光驱动惯性约束聚变(ICF)这条路始于超级计算机建模材料、激光器和实验本身。
Scullin说:“我们有1DDD、2D和3D建模能力模拟惯性约束聚变。我们模拟极端温度和压力下的材料和等离子体。高功率激光器不是商业部件。因此,我们在内部开发了许多自己的光学和激光系统。此外,还有越来越多的统计工作要做。”
根据Scullin的说法,随着统计分析需求的不断增加,计算科学家正在探索如何利用机器学习从新旧数据中发现什么。LLE需要新的计算资源来使这些发现成为可能。
Scullin表示,Conesus将为科学家提供计算资源,以收集更多的数据并进行更高的分辨率研究,包括在更大的数据中使用机器学习。对于可能需要30周才能完成的项目,Conesus可以在几天内完成,这对于工作效率的提升简直是质的飞越。
Conesus已经计划了几个项目,包括检测Omega激光系统低温内爆的统计模型;模拟α颗粒停止和燃烧等离子体;研究液晶,反应大,热稳定性很高。
罗彻斯特大学激光能量实验室(LLE)它将容纳两台25千兆瓦的激光器,这是美国国家科学基金会(NSF)罗切斯特大学支持的一个项目预算为1800万美元,为期三年。作为项目的一部分,实验室将建立一个名为EP-OPAL的新设施,将致力于研究超高强度激光与物质的相互作用。
延伸阅读:到底什么是激光核聚变?
激光核聚变[1](laser nuclear fusion)它是以高功率激光为驱动器的惯性约束核聚变。在实现可控核聚变反应的过程中,随着激光技术的发展,1963年苏联科学家N.巴索夫和中国科学家王淦昌分别提出了利用激光照射在聚变燃料靶上实现受控热核聚变反应的想法,开辟了实现受控热核聚变反应的新途径。激光核聚变应将直径为1mm的聚变燃料球均匀加热至1亿度,激光能量必须大于1亿焦,这在技术上是非常困难的。直到1972年,美国科学家J.纳科尔斯等人提出向心爆聚原理后,激光核聚变成为受控热核聚变研究中与磁约束聚变平行发展的研究途径。
-
硅光、光模块与CPO的关联及核心特性分析
硅光、光模块、CPO这些高频出现的技术术语,背后承载着数据传输效率突破的核心逻辑。从传统通信网络到新一代数据中心,光传输技术的每一次革新都离不开材料、结构与封装方式的突破。本文将带你走进光传输技术的核心圈层,揭秘硅光技术如何推动光模块从分立组装走向共封装时代,以及这条进化之路上的关键突破与未来方向。
2025-12-31
-
铋基钙钛矿展现强非线性光学响应,推动全光器件发展
近日,燕山大学与南开大学联合研究团队在无铅钙钛矿非线性光学材料领域取得重要突破。相关成果以《空间自相位调制铋基钙钛矿的强非线性响应及其全光应用》为题,发表于国际知名期刊Laser&PhotonicsReviews(2025,19(8):2401929)。该研究不仅系统揭示了有机–无机杂化铋基钙钛矿在可见光波段的优异三阶非线性光学性能,还成功演示了其在全光开关与全光二极管等关键光子器件中的实际应用潜力。
2025-12-31
-
光学三大核心元件:平面镜、凸透镜与凹透镜的原理及应用探析
从日常梳妆的镜面反射到航天探测的精密成像,从视力矫正的光学器具到芯片制造的光刻技术,光学元件已深度融入人类生产生活与尖端科技领域。平面镜、凸透镜、凹透镜作为光学系统的三大核心基石,其基于光的反射与折射规律的工作机制,构建了现代光学技术的基础框架。本文将系统阐述三者的物理原理、设计规范、应用场景及发展趋势,展现基础光学元件的科学价值与技术魅力。
2025-12-31
-
TriAngle激光束准直:一看就懂的高精度光学校准方案
激光在工业加工(切割、焊接)、医疗设备(激光手术仪)、科研实验等场景中,都需要“走得直、聚得准”。如果激光束跑偏、发散,要么加工出来的产品不合格,要么医疗操作有风险,实验数据也会出错。
传统的激光校准靠人工慢慢调,又费时间又容易出错,环境稍微变一点(比如温度、振动)就不准了。而TriAngle是专门解决这个问题的设备,能让激光校准变得简单、快速又精准。2025-12-30
