科学家在高功率激光的基础上发现高密度、超高温冰的新阶段
目前可知,太阳系的外行星天王星和海王星是富含水的气态巨行星。这些行星上的极端压力比地球大气层大200万倍。它们的内部也和太阳表面一样热。在这些条件下,水呈现出奇异的高密度冰相。接下来一起来看看高功率激光帮助科学家发现高密度、超高温冰的新阶段有哪些。

新阶段一:
研究人员最近观察到其中一个名为Ice XIX的阶段,首次使用高功率激光重现必要的极端条件。海王星模型显示了新发现的体心立方超离子冰XIX可能存在的深度。它可以解释海王星的多极磁场(紫色),这是由于电导率增加和相对于旋转轴(绿色)的倾斜所致。
新阶段二:
研究人员使用直线加速器相干光源(一种突破性的X射线激光设备)的极端物质条件仪器测量了Ice XIX结构。他们发现氧原子呈体心立方结构排列,而氢原子则像流体一样自由移动,大大提高了电导率。他们的论文发表在《科学报告》上。
新阶段三:
航海者二号是美国宇航局于1977年发射的太阳系探索航天器,它测量了天王星和海王星周围极其不寻常的磁场。科学家认为,所谓的超离子冰的奇异状态是一种可能的解释,因为这些状态增加了电导率。这项工作证明了先前未被发现的 Ice XIX的存在。它表明该相可以在正确的深度形成,并有助于解释 Voyager 2磁数据。
结论:
水是太阳系中普遍存在的一种化合物,对生命至关重要。它展示了极其复杂的压力-温度相图,其中已识别出 18 个结晶冰相。没有什么地方比天王星和海王星等气态巨行星的内部更重要的稠密冰相了。科学家推测,这些行星的复杂磁场是由具有超离子特性的水冰的奇怪高压状态产生的。然而,在这些极端条件下,冰的结构很难测量。
研究人员利用直线加速器相干光源的极端条件仪器、超快 X 射线自由电子激光器和能源部 (DOE) 科学用户设施办公室,在激光驱动的动态压缩过程中发现了冰结构的新相,这是第一个直接证据。
在200GPa(200万个大气压)和5000K(8500°F)下,这种新的高压冰相(称为 Ice XIX)具有体心立方 (BCC) 晶格结构。虽然其他结构在这些条件下理论上是稳定的,但Ice XIX的BCC结构将比之前想象的更深入地增加冰巨星内部的电导率。
这些结果为航行者2号航天器在天王星和海王星上测量的多极磁场提供了重要且令人信服的起源。
延伸阅读:
高功率激光在各种领域中发挥着重要作用,它可以被用于多种应用,从材料加工到科学研究。下面是一些高功率激光助力的应用:
1.材料加工:高功率激光可以用于切割、焊接、打孔、刻蚀和3D打印等材料加工应用。这些应用可以在制造业中提高生产效率和质量。
2.医疗领域:激光手术系统可以进行高精度切割和凝固组织,用于眼科手术、皮肤手术和肿瘤切除等。
3.通信:高功率激光用于光纤通信系统,提供高速数据传输和长距离通信能力。
4.科学研究:高功率激光在物理学、化学、生物学和地球科学等领域的实验中发挥关键作用,用于制备超短脉冲、高能粒子加速和核聚变等。
5.国防和军事应用:高功率激光用于激光武器、导航系统、通信和无人机防御等军事应用。
6.环境监测:激光雷达和激光扫描系统可用于大气污染监测、地形测绘和森林激光扫描等环境应用。
7.核融合:高功率激光可用于实验性核融合研究,试图模拟太阳等离子体条件以产生清洁能源。
8.航空航天:激光测距、激光制导和激光测速等应用有助于航空航天领域的导航和通信。
需要注意的是,高功率激光应用需要谨慎处理,因为激光具有高能量和潜在的危险性。在使用高功率激光时,必须遵循安全操作规程以减少潜在的危险。
-
半导体抛光设备自动化应用及工艺质量管控要点探析
在半导体器件规模化量产进程中,抛光工艺作为保障晶圆加工精度与表面质量的核心环节,其设备自动化水平、工艺参数调控能力、检测体系完善度及异常处置效率,直接决定生产效率、工艺稳定性与产品良率。本文从抛光设备自动化配置要求、核心工艺参数调控、关键检测指标界定及常见工艺异常处理四个维度,系统阐述半导体抛光工艺的质量管控核心要点,为半导体抛光制程的标准化、精细化实施提供参考。
2026-02-12
-
硅晶圆激光切割核心技术深度解析:原理、工艺与质量把控
在半导体制造产业链中,硅晶圆切割是芯片成型的关键工序,其加工精度与效率直接影响芯片良品率和产业发展节奏。随着微电子器件向微型化、薄型化升级,传统切割方式的弊端逐渐显现,激光切割凭借高精度、低损伤的技术优势成为行业主流。本文从激光切割系统的硬件构成出发,深入拆解隐形切割与消融切割两大核心工艺,解析光斑、焦点的精度控制逻辑,并探讨切割质量的评价维度与效率平衡策略,系统梳理硅晶圆激光切割的核心技术体系
2026-02-12
-
无掩模激光直写技术研究概述
无掩模激光直写技术作为微纳加工领域的先进光刻技术,摒弃了传统光刻工艺对掩模版的依赖,凭借直接写入的核心特性,在复杂微纳结构制备、高精度图案加工中展现出独特优势,成为微纳加工领域的重要技术方向。本文从工作原理与流程、技术特性、现存挑战、分辨率与对准参数、核心设备及厂务动力配套要求等方面,对该技术进行全面梳理与阐述。
2026-02-12
-
SiC功率器件的高温时代:封装成为行业发展核心瓶颈
在半导体功率器件技术迭代进程中,碳化硅(SiC)凭借高温工作、高电流密度、高频开关的核心优势,成为推动功率半导体升级的关键方向,其普及大幅提升了器件的功率密度与工作效率,为功率半导体行业发展带来全新机遇。但与此同时,行业发展的核心瓶颈正悄然从芯片设计与制造环节,转移至封装层面。当SiC将功率器件的工作温度与功率密度不断推高,芯片本身已具备承受更高应力的能力,而封装环节的材料适配、热路径设计等问题却日益凸显,高温与快速功率循环叠加的工况下,焊料与热路径成为决定SiC功率模块寿命的核心因素,封装技术的发展水平,正成为制约SiC功率器件产业化落地与长期可靠应用的关键。
2026-02-12
