科学家在高功率激光的基础上发现高密度、超高温冰的新阶段
目前可知,太阳系的外行星天王星和海王星是富含水的气态巨行星。这些行星上的极端压力比地球大气层大200万倍。它们的内部也和太阳表面一样热。在这些条件下,水呈现出奇异的高密度冰相。接下来一起来看看高功率激光帮助科学家发现高密度、超高温冰的新阶段有哪些。
新阶段一:
研究人员最近观察到其中一个名为Ice XIX的阶段,首次使用高功率激光重现必要的极端条件。海王星模型显示了新发现的体心立方超离子冰XIX可能存在的深度。它可以解释海王星的多极磁场(紫色),这是由于电导率增加和相对于旋转轴(绿色)的倾斜所致。
新阶段二:
研究人员使用直线加速器相干光源(一种突破性的X射线激光设备)的极端物质条件仪器测量了Ice XIX结构。他们发现氧原子呈体心立方结构排列,而氢原子则像流体一样自由移动,大大提高了电导率。他们的论文发表在《科学报告》上。
新阶段三:
航海者二号是美国宇航局于1977年发射的太阳系探索航天器,它测量了天王星和海王星周围极其不寻常的磁场。科学家认为,所谓的超离子冰的奇异状态是一种可能的解释,因为这些状态增加了电导率。这项工作证明了先前未被发现的 Ice XIX的存在。它表明该相可以在正确的深度形成,并有助于解释 Voyager 2磁数据。
结论:
水是太阳系中普遍存在的一种化合物,对生命至关重要。它展示了极其复杂的压力-温度相图,其中已识别出 18 个结晶冰相。没有什么地方比天王星和海王星等气态巨行星的内部更重要的稠密冰相了。科学家推测,这些行星的复杂磁场是由具有超离子特性的水冰的奇怪高压状态产生的。然而,在这些极端条件下,冰的结构很难测量。
研究人员利用直线加速器相干光源的极端条件仪器、超快 X 射线自由电子激光器和能源部 (DOE) 科学用户设施办公室,在激光驱动的动态压缩过程中发现了冰结构的新相,这是第一个直接证据。
在200GPa(200万个大气压)和5000K(8500°F)下,这种新的高压冰相(称为 Ice XIX)具有体心立方 (BCC) 晶格结构。虽然其他结构在这些条件下理论上是稳定的,但Ice XIX的BCC结构将比之前想象的更深入地增加冰巨星内部的电导率。
这些结果为航行者2号航天器在天王星和海王星上测量的多极磁场提供了重要且令人信服的起源。
延伸阅读:
高功率激光在各种领域中发挥着重要作用,它可以被用于多种应用,从材料加工到科学研究。下面是一些高功率激光助力的应用:
1.材料加工:高功率激光可以用于切割、焊接、打孔、刻蚀和3D打印等材料加工应用。这些应用可以在制造业中提高生产效率和质量。
2.医疗领域:激光手术系统可以进行高精度切割和凝固组织,用于眼科手术、皮肤手术和肿瘤切除等。
3.通信:高功率激光用于光纤通信系统,提供高速数据传输和长距离通信能力。
4.科学研究:高功率激光在物理学、化学、生物学和地球科学等领域的实验中发挥关键作用,用于制备超短脉冲、高能粒子加速和核聚变等。
5.国防和军事应用:高功率激光用于激光武器、导航系统、通信和无人机防御等军事应用。
6.环境监测:激光雷达和激光扫描系统可用于大气污染监测、地形测绘和森林激光扫描等环境应用。
7.核融合:高功率激光可用于实验性核融合研究,试图模拟太阳等离子体条件以产生清洁能源。
8.航空航天:激光测距、激光制导和激光测速等应用有助于航空航天领域的导航和通信。
需要注意的是,高功率激光应用需要谨慎处理,因为激光具有高能量和潜在的危险性。在使用高功率激光时,必须遵循安全操作规程以减少潜在的危险。
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30