电子自准直仪原理-电子自准直仪TriAngle原理
电子自准直仪TriAngle简介:
北京全欧的TriAngle系列电子自准直仪基于高分辨率的CMOS和PSD,结合不同焦距的准直物镜,使得该系列电子自准直仪具有非常宽广的测量范围和多种测量精度来满足不同的测量需求。同时,该系列电子自准直仪按相应光谱范围可分为紫外自准直仪、可见光自准直仪及近红外自准直仪,满足不同光谱下测量。TriAngle电子自准直仪用以测量反射镜偏转角度测量(相对/绝对);转轴偏摆角测量;入射光偏转角测量(相对/绝对),楔块角度测量。
电子自准直仪TriAngle应用:
执行机器校准,测量导轨,精密机器,精确的光学组件,光学装置的校准等等。用电子自准直仪测量速度快、容易、准确,成本低。这种高度灵敏的仪器广泛应用于世界各地的车间、工具室、检验部门和质量控制实验室,它们可测量极微小的角位移、垂直度和平行度等。
电子自准直仪TriAngle原理与工作方式:
电子自准直仪由平行光管和望远镜组成,二者使用同一个物镜。两束光由分光棱镜分开。电子自准直仪是一种很敏感的角度测量设备,可以用于机械元件高精度的角度调整。由于是准直光束,因此测量结果不依赖于被测物体与仪器的距离。其操作原理如下。
电子自准直仪照明分划板经过物镜成像后,透射到无限远处。准直光束经物体表面被反射回来。当反射面和光轴的垂直面间有夹角α,反射光束偏转角度2α进入物镜。则反射像在像平面处产生位移d。计算方法如下:
α=d/2f
此时,样品角度可直接近似等于像平面位移d(角度很小的情况)。电子自准直仪的分辨率由物镜的有效焦距f和视场角决定。
欧光科技电子自准直仪产品介绍:电子自准直仪 TriAngle®
-
飞秒激光技术:引领电镜载网加工进入高精度高效时代
在微纳尺度科学研究与工业检测领域,电子显微镜(以下简称“电镜”)是揭示物质微观结构、探究材料性能机理的核心观测工具。而电镜载网作为支撑与固定待测样品的关键组件,其加工质量不仅直接决定样品固定的稳定性,更对薄膜沉积效果、器件结构分析精度及最终电镜成像质量产生关键性影响。因此,研发适配微纳领域需求的载网加工技术,已成为提升电镜应用效能的重要环节。
2025-09-30
-
光的折射与光速变化机制探析
将直筷斜插入盛水容器中,肉眼可观察到筷子在水面处呈现“弯折”形态;夏季观察游泳池时,主观感知的池底深度显著浅于实际深度——此类日常现象的本质,均是光在不同介质界面发生折射的结果。在物理学范畴中,折射现象的核心特征之一是光的传播速度发生改变。然而,“光以光速传播”是大众熟知的常识,为何光在折射过程中速度会出现变化?这一问题需从光的本质属性、介质与光的相互作用等角度展开严谨分析。
2025-09-30
-
纳米尺度光与物质强耦合新突破:定向极化激元技术开辟精准调控研究新范式
2025年9月22日,国际权威期刊《NaturePhotonics》发表了一项具有里程碑意义的研究成果:由西班牙奥维耶多大学PabloAlonso-González教授与多诺斯蒂亚国际物理中心AlexeyNikitin教授联合领衔的研究团队,首次通过实验实现了纳米尺度下传播型极化激元与分子振动的定向振动强耦合(directionalvibrationalstrongcoupling,VSC)。该突破不仅为极化激元化学领域拓展了全新研究维度,更推动“光与物质相互作用的按需调控”从理论构想迈向实验验证阶段。
2025-09-30
-
从传统工艺到原子级精控了解超光滑镜片加工技术的六大核心路径
超光滑镜片作为光刻机、空间望远镜、激光雷达等高端光学系统的核心元件,其表面微观粗糙度需达到原子级水平(通常要求均方根粗糙度RMS<0.5nm),以最大限度降低光散射损耗,保障系统光学性能。前文已围绕超光滑镜片的定义、潜在危害及检测方法展开探讨,本文将系统梳理其加工技术体系,从奠定行业基础的传统工艺,到支撑当前高精度需求的先进技术,全面解析实现原子级光滑表面的六大核心路径。
2025-09-30