单层二维异质结的超快光物理研究获进展
研究团队以大尺寸单层MoS2和ReSe2构筑的Ⅱ类范德华异质结为研究对象,采用自主研发的超快光谱技术,结合理论计算,系统研究了不同时间阶段的非平衡态载流子动力学行为。
近期,中国科学院合肥物质科学研究院固体物理研究所计算物理与量子材料研究部研究人员与南方科技大学、北京大学、广东大湾区空天信息研究院等团队合作,研究了单层MoS2-ReSe2异质结的超快动力学,确认了跨越亚皮秒至数百皮秒不同时间尺度内电荷转移、自由载流子演化及层间激子等弛豫路径及中间过程。相关结果以Identifying the Intermediate Free-Carrier Dynamics Across the Charge Separation in Monolayer MoS2/ReSe2 Heterostructures为题发表在ACS Nano上。
以原子层厚度MoS2等为代表的过渡金属硫族化合物,可构筑出II类能带倾斜的范德华异质结,极大拓展二维材料的物理内涵及其在信息、光电等领域的应用范围。然而,II类二维范德华异质结中诸如电荷转移机制、热电子的面内局域化与扩展化、能量弛豫路径、不同准粒子的相互作用及演化等相关的超快动力学物理图像长期存在争议,深入认识和理解它对器件设计及应用至关重要。
研究团队以大尺寸单层MoS2和ReSe2构筑的Ⅱ类范德华异质结为研究对象,采用自主研发的超快光谱技术,结合理论计算,系统研究了不同时间阶段的非平衡态载流子动力学行为。研究人员利用太赫兹发射光谱,通过飞秒激光诱导的太赫兹脉冲波形,确定沿堆叠方向的超快界面电流形成及电荷转移过程约为170 fs(图1)。借助时间分辨太赫兹光谱,探测异质结面内电荷输运动力学(图2)。对比MoS2/ReSe2异质结及其独立组分的时域和频域光电导谱,发现异质结的太赫兹光电导符合简单的Drude模型,其背散射效应接近零,从而证实对电导率的贡献主要来自高度扩展化的热电子,而非局域化激子,进一步确定了这种热载流子演化为层间激子的特征时间常数(~0.7 ps)及表面俘获过程(~13 ps)。研究人员结合近红外飞秒泵浦-探测反射光谱,探测到MoS2/ReSe2异质结的激子动力学,发现层间激子寿命达到365 ps(图3)。同时,该工作发现通过异质结构筑,可将二维ReSe2中的太赫兹光电导、非线性饱和吸收系数及带间复合寿命分别提升近3倍、5倍及10倍以上,展现出巨大的光电性能调控范围。
图1 不同堆叠顺序的MoS2-ReSe2异质结的太赫兹发射光谱
图2 MoS2-ReSe2异质结太赫兹瞬态光电导谱
图3 MoS2/ReSe2异质结等飞秒泵浦-探测反射光谱
该研究揭示了MoS2/ReSe2异质结中完整的激发态载流子演化和弛豫路径,为认识和理解II类范德华异质结超快动力学提供了新的参考,对基于MoS2/ReX2 (X=Se, S)类的异相异质结体系的光电器件设计和发展具有重要指导意义。
该工作得到了国家自然科学基金委国家重大科研仪器研制项目及面上项目等的支持。
-
点列图、波像差与光学传递函数:贯穿光学设计的三大核心评价技术分析
在精密光学系统的设计与优化中,像质评价是贯穿始终的核心环节。点列图(SpotDiagram)、波像差(WaveAberration)与光学传递函数(OTF,OpticalTransferFunction)作为三大支柱性技术,分别从几何轨迹追踪、波前相位分析、频域特性量化三个维度构建了完整的评价体系。它们既独立揭示系统特性,又在设计流程中形成有机协同,成为光学工程师雕琢高性能系统的关键工具。
2025-05-09
-
时域孤子分子:光纤通信信息容量突破的重要进展
在非线性科学领域,孤子作为稳定的非线性波动现象,在多个学科领域展现出重要研究价值。2005年,德国罗斯托克大学M.Stratmann研究团队在《物理评论快报》发表研究成果,首次通过实验观测证实光纤中存在时域孤子束缚态——一种由暗孤子绑定两个亮孤子形成的稳定结构。该研究为突破传统光纤通信系统的香农容量极限提供了新的物理路径,推动孤子通信从二进制编码向多态信息载体的理论与技术探索迈出关键一步。
2025-05-09
-
国产显微镜突围国际巨头垄断:从"替代者"到行业重塑者
在精密仪器领域长期被奥林巴斯、蔡司等国际品牌垄断的格局下,中国企业正以"进口品质、半数价格"的优势改写市场规则。记者从上海仪圆光学等国产龙头企业获悉,通过"技术迭代+成本重构"双轮驱动,国产显微镜关键性能指标已比肩国际一流,交付周期缩短至30天(进口品牌平均90天),价格仅为进口产品的50%-55%,正加速实现高端市场突破。
2025-05-08
-
一文了解STED显微镜:突破光学极限,开启微观世界新视野
在微观世界的研究中,传统光学显微镜一直受到光学衍射极限的限制,难以捕捉到更精细的细胞结构和生物分子的动态变化。然而,随着科学技术的不断进步,受激发射损耗(STED)显微镜的出现,为科学家们提供了一种突破这一限制的有力工具。
2025-05-08